Lidiya Dolgikh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4487320/publications.pdf

Version: 2024-02-01

1477746 1125271 28 194 13 6 citations h-index g-index papers 28 28 28 264 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Structure and State of Copper Oxide Species Supported on Yttria-Stabilized Zirconia. Journal of Physical Chemistry C, 2009, 113, 21368-21375.	1.5	36
2	Structure of Copper Oxide Species Supported on Monoclinic Zirconia. Journal of Physical Chemistry C, 2015, 119, 28828-28835.	1.5	34
3	The use of industrial dehydrogenation catalysts for hydrogen production from bioethanol. International Journal of Hydrogen Energy, 2006, 31, 1607-1610.	3.8	32
4	Production of Hydrogen by Steam Reforming of Ethanol. Theoretical and Experimental Chemistry, 2013, 49, 277-297.	0.2	14
5	Catalysis of steam reforming of ethanol by nanosized manganese ferrite for hydrogen production. Theoretical and Experimental Chemistry, 2012, 48, 129-134.	0.2	10
6	Effect of crystalline modification of the support on the reduction and catalytic properties of Cu/ZrO2 catalysts in the steam reforming of bioethanol. Theoretical and Experimental Chemistry, 2011, 47, 324-330.	0.2	9
7	Catalytic two-step process for the production of propylene from bioethanol. Theoretical and Experimental Chemistry, 2019, 55, 50-55.	0.2	7
8	Influence of the Composition of Nanosized MFe2O4 Spinels (M = Ni, Co, Mn) on Their Catalytic Properties in the Steam Reforming of Ethanol. Theoretical and Experimental Chemistry, 2013, 49, 185-192.	0.2	6
9	Steam Reforming of Ethanol on Ferrites. Theoretical and Experimental Chemistry, 2018, 54, 349-357.	0.2	6
10	Catalytic properties of M-Cu/ZrO2 (M = Fe, Co, Ni) in steam reforming of ethanol. Theoretical and Experimental Chemistry, 2013, 48, 386-393.	0.2	5
11	Relationship between yield of hydrogen in steam reforming of ethanol and selectivity with respect to carbon-containing products. Theoretical and Experimental Chemistry, 2013, 49, 109-114.	0.2	5
12	Catalytic Properties of MnO, Fe2O3, and MnFe2O4 in the Steam Reforming of Ethanol. Theoretical and Experimental Chemistry, 2014, 50, 245-249.	0.2	5
13	Catalytic Properties of CuFe2O4 in Steam Reforming of Ethanol. Theoretical and Experimental Chemistry, 2015, 51, 230-235.	0.2	5
14	Effect of Temperature on the Equilibrium Yield of Propylene in Catalytic Processes of Ethanol Conversion. Theoretical and Experimental Chemistry, 2016, 52, 175-183.	0.2	4
15	Effect of the mobility of oxygen in perovskite catalyst on the dynamics of oxidative coupling of methane. Theoretical and Experimental Chemistry, 2011, 47, 49-54.	0.2	3
16	Catalytic Properties of Nanosized Cu/ZrO2 Systems in the Steam Reforming of Bioethanol. Theoretical and Experimental Chemistry, 2014, 50, 46-52.	0.2	3
17	Influence of ion-exchange and impregnation modification of zeolite X on its catalytic properties in the alkylation of toluene with methanol. Theoretical and Experimental Chemistry, 2006, 42, 37-42.	0.2	2
18	Nanosize Effect in Heterogeneous Catalytic Processes Over Copper, Iron, and Zirconium Oxides. Theoretical and Experimental Chemistry, 2017, 53, 305-314.	0.2	2

#	Article	IF	CITATIONS
19	Kinetic peculiarities of the heterogeneous-homogeneous conversion of ethylene to butadiene. Theoretical and Experimental Chemistry, 1995, 31, 40-43.	0.2	1
20	Direct oxygen-free methane dehydrocondensation in the presence of pentasil-type metal-bearing zeolites. Theoretical and Experimental Chemistry, 2000, 36, 108-112.	0.2	1
21	Methane coupling over SrCoO3-based perovskites in the absence of gas-phase oxygen. Studies in Surface Science and Catalysis, 2000, 130, 707-712.	1.5	1
22	Effect of Alkali Metals on the Strength of Oxygen–Catalyst Bond in Co-Containing Perovskites. Theoretical and Experimental Chemistry, 2002, 38, 43-48.	0.2	1
23	Ferrites MFe2O4 (M = Mg, Mn, Fe, Zn) as Catalysts for Steam Reforming of Ethanol. Theoretical and Experimental Chemistry, 2016, 52, 246-251.	0.2	1
24	Low-Temperature Steam Reforming of Ethanol Over Iron Catalysts on Oxide and Carbon Supports. Theoretical and Experimental Chemistry, 2020, 56, 192-198.	0.2	1
25	Kinetics and mechanism of isotopic exchange for methane on group 4 to 8 transition metal borides and silicides. Theoretical and Experimental Chemistry, 1993, 28, 170-172.	0.2	0
26	Single-stage catalytic conversion of ethylene to butadiene. Theoretical and Experimental Chemistry, 1994, 29, 245-246.	0.2	0
27	Conversion of ethylene to butadiene and higher hydrocarbons in the absence of a catalyst. Theoretical and Experimental Chemistry, 1995, 31, 82-85.	0.2	0
28	Efficient hydrogen production by steam reforming of ethanol over ferrite catalysts. Catalysis and Petrochemistry, 2020, , 1-10.	0.2	0