Peiyuan Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4486885/publications.pdf

Version: 2024-02-01

172457 223800 2,404 64 29 46 citations h-index g-index papers 71 71 71 1926 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Asymmetric phosphoric acid–catalyzed four-component Ugi reaction. Science, 2018, 361, .	12.6	150
2	Rational design, enantioselective synthesis and catalytic applications of axially chiral EBINOLs. Nature Catalysis, 2019, 2, 504-513.	34.4	145
3	Catalytic Asymmetric [4+2] Annulation Initiated by an Azaâ€Rauhut–Currier Reaction: Facile Entry to Highly Functionalized Tetrahydropyridines. Angewandte Chemie - International Edition, 2012, 51, 7825-7829.	13.8	104
4	Streamlined Construction of Silicon-Stereogenic Silanes by Tandem Enantioselective C–H Silylation/Alkene Hydrosilylation. Journal of the American Chemical Society, 2020, 142, 13459-13468.	13.7	104
5	Biochemical Characterization of a Eukaryotic Decalin-Forming Diels–Alderase. Journal of the American Chemical Society, 2016, 138, 15837-15840.	13.7	98
6	Organocatalytic atroposelective construction of axially chiral arylquinones. Nature Communications, 2019, 10, 4268.	12.8	92
7	Mechanisms and Origins of Periselectivity of the Ambimodal [6 + 4] Cycloadditions of Tropone to Dimethylfulvene. Journal of the American Chemical Society, 2017, 139, 8251-8258.	13.7	87
8	DFT-Guided Phosphoric-Acid-Catalyzed Atroposelective Arene Functionalization of Nitrosonaphthalene. CheM, 2020, 6, 2046-2059.	11.7	83
9	Asymmetric Construction of Axially Chiral 2â€Arylpyrroles by Chirality Transfer of Atropisomeric Alkenes. Angewandte Chemie - International Edition, 2019, 58, 13443-13447.	13.8	75
10	Transannular $[6+4]$ and Ambimodal Cycloaddition in the Biosynthesis of Heronamide A. Journal of the American Chemical Society, 2015, 137, 13518-13523.	13.7	72
11	Bifunctional Phosphonium Salt Directed Enantioselective Formal [4 + 1] Annulation of Hydroxyl-Substituted <i>para</i> -Quinone Methides with α-Halogenated Ketones. Organic Letters, 2019, 21, 7298-7302.	4.6	72
12	Dual-Ligand-Enabled Ir(III)-Catalyzed Enantioselective C–H Amidation for the Synthesis of Chiral Sulfoxides. ACS Catalysis, 2020, 10, 7207-7215.	11.2	65
13	Relationships between Product Ratios in Ambimodal Pericyclic Reactions and Bond Lengths in Transition Structures. Journal of the American Chemical Society, 2018, 140, 3061-3067.	13.7	63
14	Distortion-Controlled Reactivity and Molecular Dynamics of Dehydro-Diels–Alder Reactions. Journal of the American Chemical Society, 2016, 138, 8247-8252.	13.7	57
15	Influence of water and enzyme SpnF on the dynamics and energetics of the ambimodal $[6+4]/[4+2]$ cycloaddition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E848-E855.	7.1	57
16	Organocatalytic Asymmetric Synthesis of Protected α,βâ€Diamino Acids. Advanced Synthesis and Catalysis, 2009, 351, 2797-2800.	4.3	53
17	Why Alkynyl Substituents Dramatically Accelerate Hexadehydro-Diels–Alder (HDDA) Reactions: Stepwise Mechanisms of HDDA Cycloadditions. Organic Letters, 2014, 16, 5702-5705.	4.6	51
18	Atroposelective Construction of Arylindoles by Chiral Phosphoric Acid-Catalyzed Cross-Coupling of Indoles and Quinones. Organic Letters, 2019, 21, 6000-6004.	4.6	49

#	Article	IF	Citations
19	Phenalenone Polyketide Cyclization Catalyzed by Fungal Polyketide Synthase and Flavin-Dependent Monooxygenase. Journal of the American Chemical Society, 2016, 138, 4249-4259.	13.7	46
20	Molecular Dynamics of Dimethyldioxirane C–H Oxidation. Journal of the American Chemical Society, 2016, 138, 4237-4242.	13.7	46
21	Diazo Esters as Dienophiles in Intramolecular $(4 + 2)$ Cycloadditions: Computational Explorations of Mechanism. Journal of the American Chemical Society, 2017, 139, 2766-2770.	13.7	46
22	Glutathioneâ€Depleting Organic Metal Adjuvants for Effective NIRâ€II Photothermal Immunotherapy. Advanced Materials, 2022, 34, e2201706.	21.0	46
23	Spatiotemporal profiling of cytosolic signaling complexes in living cells by selective proximity proteomics. Nature Communications, 2021, 12, 71.	12.8	43
24	Organocatalytic [6+4] Cycloadditions via Zwitterionic Intermediates: Chemo-, Regio-, and Stereoselectivities. Journal of the American Chemical Society, 2018, 140, 13726-13735.	13.7	37
25	Chiral BrÃ,nsted Acid from Chiral Phosphoric Acid Boron Complex and Water: Asymmetric Reduction of Indoles. Angewandte Chemie - International Edition, 2020, 59, 3294-3299.	13.8	37
26	Organocatalytic enantioselective dearomatization of thiophenes by 1,10-conjugate addition of indole imine methides. Nature Communications, 2021, 12, 4881.	12.8	36
27	Computational Exploration of Concerted and Zwitterionic Mechanisms of Diels–Alder Reactions between 1,2,3-Triazines and Enamines and Acceleration by Hydrogen-Bonding Solvents. Journal of the American Chemical Society, 2017, 139, 18213-18221.	13.7	35
28	Engineered non-covalent π interactions as key elements for chiral recognition. Nature Communications, 2022, 13, .	12.8	34
29	Asymmetric Construction of Axially Chiral 2â€Arylpyrroles by Chirality Transfer of Atropisomeric Alkenes. Angewandte Chemie, 2019, 131, 13577-13581.	2.0	30
30	Stereochemical Control via Chirality Pairing: Stereodivergent Syntheses of Enantioenriched Homoallylic Alcohols. Angewandte Chemie - International Edition, 2021, 60, 24096-24106.	13.8	28
31	Insight into Regioselective Control in Aerobic Oxidative C–H/C–H Coupling for C3-Arylation of Benzothiophenes: Toward Structurally Nontraditional OLED Materials. Journal of the American Chemical Society, 2021, 143, 21066-21076.	13.7	28
32	Computational Design of Enhanced Enantioselectivity in Chiral Phosphoric Acid-Catalyzed Oxidative Desymmetrization of 1,3-Diol Acetals. Journal of the American Chemical Society, 2020, 142, 8506-8513.	13.7	27
33	Ambimodal Dipolar/Diels–Alder Cycloaddition Transition States Involving Proton Transfers. Journal of the American Chemical Society, 2018, 140, 18124-18131.	13.7	26
34	Catalytic Effects of Ammonium and Sulfonium Salts and External Electric Fields on Aza-Diels–Alder Reactions. Journal of Organic Chemistry, 2020, 85, 2618-2625.	3.2	23
35	Asymmetric synthesis of N-bridged [3.3.1] ring systems by phosphonium salt/Lewis acid relay catalysis. Nature Communications, 2022, 13, 357.	12.8	19
36	Chiral Phosphoric Acid Catalyzed Conversion of Epoxides into Thiiranes: Mechanism, Stereochemical Model, and New Catalyst Design. Angewandte Chemie - International Edition, 2022, 61, .	13.8	19

#	Article	IF	CITATIONS
37	Organocatalytic Enantioselective 1,10-Addition of Alkynyl Indole Imine Methides with Thiazolones: An Access to Axially Chiral Tetrasubstituted Allenes. Organic Letters, 2022, 24, 4914-4918.	4.6	19
38	Computational Investigation of the Mechanism of Diels–Alderase Pyrl4. Journal of the American Chemical Society, 2020, 142, 20232-20239.	13.7	18
39	Pd-Catalyzed Dearomative Asymmetric Allylic Alkylation of Naphthols with Alkoxyallenes. Journal of Organic Chemistry, 2020, 85, 7896-7904.	3.2	17
40	Simultaneous Kinetic Resolution and Asymmetric Induction within a Borrowing Hydrogen Cascade Mediated by a Single Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	13.8	17
41	Enantioselective Cu-catalyzed double hydroboration of alkynes to access chiral gem-diborylalkanes. Nature Communications, 2022, 13 , .	12.8	17
42	Mechanisms and Origins of Selectivities of the Lewis Acid-Catalyzed Diels–Alder Reactions between Arylallenes and Acrylates. Journal of Organic Chemistry, 2017, 82, 6398-6402.	3.2	15
43	Intramolecular Diels–Alder Approaches to the Decalin Core of Verongidolide: The Origin of the exo-Selectivity, a DFT Analysis. Journal of Organic Chemistry, 2018, 83, 5975-5985.	3.2	15
44	Theoretical Study of Diastereoselective NHC-Catalyzed Cross-Benzoin Reactions between Furfural and <i>N</i> -Boc-Protected α-Amino Aldehydes. Journal of Organic Chemistry, 2019, 84, 13565-13571.	3.2	15
45	Construction of boron-stereogenic compounds via enantioselective Cu-catalyzed desymmetric B–H bond insertion reaction. Nature Communications, 2022, 13, 2624.	12.8	15
46	Origins of regioselectivity in 1,3-dipolar cycloadditions of nitrile oxides with alkynylboronates. Bioorganic and Medicinal Chemistry, 2016, 24, 4787-4790.	3.0	14
47	Dynamical Trajectory Study of the Transannular [6+4] and Ambimodal Cycloaddition in the Biosynthesis of Heronamides. Journal of Organic Chemistry, 2020, 85, 9440-9445.	3.2	14
48	A theoretical study of phosphorescent Cu(I) complexes with 2-(2'quinolyl)imidazole and POP mixed ligands. Organic Electronics, 2017, 45, 9-19.	2.6	13
49	Transition-Metal-free Double-Insertive Coupling of Isocyanides with Arylboronic Acids Enabled Diarylmethanamines. Cell Reports Physical Science, 2020, 1, 100268.	5.6	13
50	Radical Anion Promoted Chemoselective Cleavage of Csp ² â€"S Bond Enables Formal Cross-Coupling of Aryl Methyl Sulfones with Alcohols. Organic Letters, 2021, 23, 5761-5765.	4.6	13
51	Organocatalytic discrimination of non-directing aryl and heteroaryl groups: enantioselective synthesis of bioactive indole-containing triarylmethanes. Chemical Science, 2022, 13, 5767-5773.	7.4	10
52	Origins of Stereoselectivity in Chiral Aminoalcohol Catalysis of Oxyallyl Cation–Indole Reactions. Organic Letters, 2017, 19, 5685-5688.	4.6	9
53	Chiral BrÃ,nsted Acid from Chiral Phosphoric Acid Boron Complex and Water: Asymmetric Reduction of Indoles. Angewandte Chemie, 2020, 132, 3320-3325.	2.0	8
54	Stereochemical Control via Chirality Pairing: Stereodivergent Syntheses of Enantioenriched Homoallylic Alcohols. Angewandte Chemie, 2021, 133, 24298-24308.	2.0	8

#	Article	IF	CITATIONS
55	Prediction of new phase 2D <i>C</i> _{2h} group III monochalcogenides with direct bandgaps and highly anisotropic carrier mobilities. Materials Advances, 2022, 3, 2213-2221.	5.4	7
56	Chiral Phosphoric Acid Catalyzed Conversion of Epoxides into Thiiranes: Mechanism, Stereochemical Model, and New Catalyst Design. Angewandte Chemie, 0, , .	2.0	6
57	Enhanced Thermochemical Heat Capacity of Liquids: Molecular to Macroscale Modeling. Nanoscale and Microscale Thermophysical Engineering, 2019, 23, 235-246.	2.6	4
58	Aqueous Diels–Alder reactions for thermochemical storage and heat transfer fluids identified using density functional theory. Journal of Computational Chemistry, 2020, 41, 2137-2150.	3.3	4
59	Chiral <i>N</i> -triflylphosphoramide-catalyzed asymmetric hydroamination of unactivated alkenes: a hetero-ene reaction mechanism. Organic Chemistry Frontiers, 2022, 9, 1649-1661.	4.5	4
60	Synthesis of 2-Ethenylcyclopropyl Aryl Ketones via Intramolecular S _N 2-like Displacement of an Ester. Organic Letters, 2016, 18, 5138-5141.	4.6	3
61	Isomeric Nonfullerene Acceptors: Planar Conformation Leading to a Higher Efficiency. ACS Applied Energy Materials, 2022, 5, 4556-4563.	5.1	3
62	Simultaneous Kinetic Resolution and Asymmetric Induction within a Borrowing Hydrogen Cascade Mediated by a Single Catalyst. Angewandte Chemie, 0, , .	2.0	2
63	Thermal fluids with high specific heat capacity through reversible Diels-Alder reactions. IScience, 2022, 25, 103540.	4.1	2
64	Ï€-Facial Stereoselectivity in Acyl Nitroso Cycloadditions to 5,5-Unsymmetrically Substituted Cyclopentadienes: Computational Exploration of Origins of Selectivity and the Role of Substituent Conformations on Selectivity. Journal of Organic Chemistry, 2021, 86, 17082-17089.	3.2	1