Jiong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4486799/publications.pdf Version: 2024-02-01

ΙΟΝΟ ΥΛΝΟ

#	Article	IF	CITATIONS
1	Extraordinary Photoluminescence and Strong Temperature/Angle-Dependent Raman Responses in Few-Layer Phosphorene. ACS Nano, 2014, 8, 9590-9596.	7.3	604
2	Producing air-stable monolayers of phosphorene and their defect engineering. Nature Communications, 2016, 7, 10450.	5.8	443
3	Optical tuning of exciton and trion emissions in monolayer phosphorene. Light: Science and Applications, 2015, 4, e312-e312.	7.7	276
4	Manyâ€Body Complexes in 2D Semiconductors. Advanced Materials, 2019, 31, e1706945.	11.1	255
5	Robust Excitons and Trions in Monolayer MoTe ₂ . ACS Nano, 2015, 9, 6603-6609.	7.3	148
6	Selfâ€Limiting Galvanic Growth of MnO ₂ Monolayers on a Liquid Metal—Applied to Photocatalysis. Advanced Functional Materials, 2019, 29, 1901649.	7.8	129
7	Liquid metal-based synthesis of high performance monolayer SnS piezoelectric nanogenerators. Nature Communications, 2020, 11, 3449.	5.8	128
8	Atomically thin optical lenses and gratings. Light: Science and Applications, 2016, 5, e16046-e16046.	7.7	107
9	Unique surface patterns emerging during solidification of liquid metal alloys. Nature Nanotechnology, 2021, 16, 431-439.	15.6	104
10	Light–Matter Interactions in Phosphorene. Accounts of Chemical Research, 2016, 49, 1806-1815.	7.6	97
11	Extraordinarily Bound Quasi-One-Dimensional Trions in Two-Dimensional Phosphorene Atomic Semiconductors. ACS Nano, 2016, 10, 2046-2053.	7.3	92
12	Exciton and Trion Dynamics in Bilayer MoS ₂ . Small, 2015, 11, 6384-6390.	5.2	87
13	Polyphenolâ€Induced Adhesive Liquid Metal Inks for Substrateâ€Independent Direct Pen Writing. Advanced Functional Materials, 2021, 31, 2007336.	7.8	84
14	Efficient and Layerâ€Dependent Exciton Pumping across Atomically Thin Organic–Inorganic Typeâ€I Heterostructures. Advanced Materials, 2018, 30, e1803986.	11.1	79
15	Electronic Skins Based on Liquid Metals. Proceedings of the IEEE, 2019, 107, 2168-2184.	16.4	77
16	Advantages of eutectic alloys for creating catalysts in the realm of nanotechnology-enabled metallurgy. Nature Communications, 2019, 10, 4645.	5.8	76
17	Manipulation of photoluminescence of two-dimensional MoSe2 by gold nanoantennas. Scientific Reports, 2016, 6, 22296.	1.6	75
18	Magnetic and Conductive Liquid Metal Gels. ACS Applied Materials & Interfaces, 2020, 12, 20119-20128.	4.0	73

JIONG YANG

#	Article	IF	CITATIONS
19	Excited State Biexcitons in Atomically Thin MoSe ₂ . ACS Nano, 2017, 11, 7468-7475.	7.3	68
20	Layer-dependent surface potential of phosphorene and anisotropic/layer-dependent charge transfer in phosphorene–gold hybrid systems. Nanoscale, 2016, 8, 129-135.	2.8	65
21	Liquidâ€Metalâ€Templated Synthesis of 2D Graphitic Materials at Room Temperature. Advanced Materials, 2020, 32, e2001997.	11.1	63
22	Liquidâ€Metalâ€Enabled Mechanicalâ€Energyâ€Induced CO ₂ Conversion. Advanced Materials, 2022 34, e2105789.	" 11.1	58
23	High-Efficiency Monolayer Molybdenum Ditelluride Light-Emitting Diode and Photodetector. ACS Applied Materials & Interfaces, 2018, 10, 43291-43298.	4.0	56
24	Pulsing Liquid Alloys for Nanomaterials Synthesis. ACS Nano, 2020, 14, 14070-14079.	7.3	52
25	Exciton Brightening in Monolayer Phosphorene via Dimensionality Modification. Advanced Materials, 2016, 28, 3493-3498.	11.1	49
26	Liquid metals for tuning gas sensitive layers. Journal of Materials Chemistry C, 2019, 7, 6375-6382.	2.7	46
27	Intermetallic wetting enabled high resolution liquid metal patterning for 3D and flexible electronics. Journal of Materials Chemistry C, 2022, 10, 921-931.	2.7	45
28	Peculiar piezoelectricity of atomically thin planar structures. Nanoscale, 2020, 12, 2875-2901.	2.8	44
29	Maximum piezoelectricity in a few unit-cell thick planar ZnO – A liquid metal-based synthesis approach. Materials Today, 2021, 44, 69-77.	8.3	44
30	Liquid metal core–shell structures functionalised <i>via</i> mechanical agitation: the example of Field's metal. Journal of Materials Chemistry A, 2019, 7, 17876-17887.	5.2	42
31	Selfâ€Ðeposition of 2D Molybdenum Sulfides on Liquid Metals. Advanced Functional Materials, 2021, 31, 2005866.	7.8	41
32	Liquid Metal-Based Route for Synthesizing and Tuning Gas-Sensing Elements. ACS Sensors, 2020, 5, 1177-1189.	4.0	34
33	Cellâ€Mediated Biointerfacial Phenolic Assembly for Probiotic Nano Encapsulation. Advanced Functional Materials, 2022, 32, .	7.8	34
34	Phosphorene: An emerging 2D material. Journal of Materials Research, 2017, 32, 2839-2847.	1.2	33
35	Strongly enhanced photoluminescence in nanostructured monolayer MoS ₂ by chemical vapor deposition. Nanotechnology, 2016, 27, 135706.	1.3	32
36	Photolithography–enabled direct patterning of liquid metals. Journal of Materials Chemistry C, 2020, 8, 7805-7811.	2.7	32

JIONG YANG

#	Article	IF	CITATIONS
37	Galliumâ€Based Liquid Metal Reaction Media for Interfacial Precipitation of Bismuth Nanomaterials with Controlled Phases and Morphologies. Advanced Functional Materials, 2022, 32, .	7.8	28
38	Liquid metal-supported synthesis of cupric oxide. Journal of Materials Chemistry C, 2020, 8, 1656-1665.	2.7	27
39	Illumination-Induced Phase Segregation and Suppressed Solubility Limit in Br-Rich Mixed-Halide Inorganic Perovskites. ACS Applied Materials & Interfaces, 2020, 12, 38376-38385.	4.0	27
40	Polydopamine Shell as a Ga ³⁺ Reservoir for Triggering Gallium–Indium Phase Separation in Eutectic Gallium–Indium Nanoalloys. ACS Nano, 2021, 15, 16839-16850.	7.3	27
41	Near-Field Excited Archimedean-like Tiling Patterns in Phonon-Polaritonic Crystals. ACS Nano, 2021, 15, 9134-9142.	7.3	21
42	Liquid-Metal-Assisted Deposition and Patterning of Molybdenum Dioxide at Low Temperature. ACS Applied Materials & Interfaces, 2021, 13, 53181-53193.	4.0	19
43	Bismuth telluride topological insulator synthesized using liquid metal alloys: Test of NO2 selective sensing. Applied Materials Today, 2021, 22, 100954.	2.3	18
44	Optical properties of phosphorene. Chinese Physics B, 2017, 26, 034201.	0.7	16
45	Boundary-Induced Auxiliary Features in Scattering-Type Near-Field Fourier Transform Infrared Spectroscopy. ACS Nano, 2020, 14, 1123-1132.	7.3	15
46	Oscillatory bifurcation patterns initiated by seeded surface solidification of liquid metals. , 2022, 1, 158-169.		15
47	High- <i>Q</i> Phonon-polaritons in Spatially Confined Freestanding α-MoO ₃ . ACS Photonics, 2022, 9, 905-913.	3.2	15
48	Axial localization and tracking of self-interference nanoparticles by lateral point spread functions. Nature Communications, 2021, 12, 2019.	5.8	13
49	Liquid state of post-transition metals for interfacial synthesis of two-dimensional materials. Applied Physics Reviews, 2022, 9, .	5.5	9
50	Insights into the Interfacial Contact and Charge Transport of Gas-Sensing Liquid Metal Marbles. ACS Applied Materials & Interfaces, 2022, 14, 30112-30123.	4.0	9
51	Induction heating for the removal of liquid metal-based implant mimics: A proof-of-concept. Applied Materials Today, 2022, 27, 101459.	2.3	7
52	Elastic and Inelastic Light–Matter Interactions in 2D Materials. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 206-213.	1.9	6
53	Ultra-sensitive photon sensor based on self-assembled nanoparticle plasmonic membrane resonator. , 2016, , .		2
54	Black phosphorus: Light-matter interactions and potential applications. , 2020, , 159-173.		1

#	Article	IF	CITATIONS
55	2D materials for nanophotonic devices. , 2015, , .		0
56	Manipulating optical beam flow fronts in 2D materials. SPIE Newsroom, 0, , .	0.1	0
57	Phosphorene Characterization. , 2019, , 47-66.		0