Shahram Pezeshk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4486592/publications.pdf

Version: 2024-02-01

471509 361022 1,349 54 17 35 citations h-index g-index papers 54 54 54 940 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optimized Design of Two-Dimensional Structures Using a Genetic Algorithm. Journal of Structural Engineering, 1998, 124, 551-559.	3.4	212
2	Selection and Scaling of Ground Motion Time Histories for Structural Design Using Genetic Algorithms. Earthquake Spectra, 2004, 20, 413-426.	3.1	164
3	On the application of machine learning techniques to derive seismic fragility curves. Computers and Structures, 2019, 218, 108-122.	4.4	157
4	Flexural Design of Reinforced Concrete Frames Using a Genetic Algorithm. Journal of Structural Engineering, 2003, 129, 105-115.	3.4	128
5	Probabilistic Performance-Based Optimal Design of Steel Moment-Resisting Frames. I: Formulation. Journal of Structural Engineering, 2007, 133, 757-766.	3.4	45
6	Partially Nonergodic Empirical Groundâ€Motion Models for Predicting Horizontal and Vertical PGV, PGA, and 5% Damped Linear Acceleration Response Spectra Using Data from the Iranian Plateau. Bulletin of the Seismological Society of America, 2017, 107, 934-948.	2.3	44
7	Risk-Based Seismic Design for Optimal Structural and Nonstructural System Performance. Earthquake Spectra, 2011, 27, 857-880.	3.1	43
8	School based optimization algorithm for design of steel frames. Engineering Structures, 2018, 171, 326-335.	5. 3	41
9	Alternative Hybrid Empirical Groundâ€Motion Model for Central and Eastern North America Using Hybrid Simulations and NGAâ€West2 Models. Bulletin of the Seismological Society of America, 2016, 106, 734-754.	2.3	34
10	Sensitivity analysis of the seismic demands of RC moment resisting frames to different aspects of ground motions. Earthquake Engineering and Structural Dynamics, 2017, 46, 2739-2755.	4.4	32
11	Groundâ€Motion Prediction Equations for Central and Eastern North America Using the Hybrid Empirical Method and NGAâ€West2 Empirical Groundâ€Motion Models. Bulletin of the Seismological Society of America, 2018, 108, 2278-2304.	2.3	29
12	Seismic performance-based design optimization considering direct economic loss and direct social loss. Engineering Structures, 2014, 76, 193-201.	5 . 3	28
13	On the number of required response history analyses. Bulletin of Earthquake Engineering, 2018, 16, 5195-5226.	4.1	28
14	Probabilistic Performance-Based Optimal Design of Steel Moment-Resisting Frames. II: Applications. Journal of Structural Engineering, 2007, 133, 767-776.	3.4	27
15	Estimation of the Codaâ€Wave Attenuation and Geometrical Spreading in the New Madrid Seismic Zone. Bulletin of the Seismological Society of America, 2016, 106, 1482-1498.	2.3	26
16	Role of conditioning intensity measure in the influence of ground motion duration on the structural response. Soil Dynamics and Earthquake Engineering, 2018, 104, 408-417.	3.8	23
17	Application of pool-based active learning in reducing the number of required response history analyses. Computers and Structures, 2020, 241, 106355.	4.4	22
18	Estimation of <i>îº</i> ₀ Implied by the Highâ€Frequency Shape of the NGAâ€West2 Groundâ€Motion Prediction Equations. Bulletin of the Seismological Society of America, 2016, 106, 1342-1356.	2.3	18

#	Article	IF	CITATIONS
19	FUZZY PATTERN CLASSIFICATION OF STRONG GROUND MOTION RECORDS. Journal of Earthquake Engineering, 2005, 9, 307-332.	2.5	17
20	Ground Motion Site Amplification Factors for Sites Located within the Mississippi Embayment with Consideration of Deep Soil Deposits. Earthquake Spectra, 2015, 31, 699-722.	3.1	17
21	A Study of Verticalâ€ŧoâ€Horizontal Ratio of Earthquake Components in the Gulf Coast Region. Bulletin of the Seismological Society of America, 2017, 107, 2055-2066.	2.3	17
22	Performance-Based Optimization considering Both Structural and Nonstructural Components. Earthquake Spectra, 2007, 23, 685-709.	3.1	14
23	Synthetic Seismograms Using a Hybrid Broadband Groundâ€Motion Simulation Approach: Application to Central and Eastern United States. Bulletin of the Seismological Society of America, 2015, 105, 686-705.	2.3	14
24	An Analytical Effective Pointâ€Sourceâ€Based Distanceâ€Conversion Approach to Mimic the Effects of Extended Faults on Seismic Hazard Assessment. Bulletin of the Seismological Society of America, 2018, 108, 742-760.	2.3	14
25	Site amplification within the Mississippi embayment of the central United States: Investigation of possible differences among various phases of seismic waves and presence of basin waves. Soil Dynamics and Earthquake Engineering, 2018, 113, 534-544.	3.8	14
26	Attenuation of Lg waves in the New Madrid seismic zone of the central United States using the coda normalization method. Tectonophysics, 2017, 712-713, 623-633.	2.2	10
27	Near-source attenuation of high-frequency body waves beneath the New Madrid Seismic Zone. Journal of Seismology, 2018, 22, 455-470.	1.3	10
28	Near-source strong motion database catalog for Iran. Arabian Journal of Geosciences, 2018, 11, 1.	1.3	9
29	An Equivalent Pointâ€Source Stochastic Simulation of the NGAâ€West2 Groundâ€Motion Prediction Equations. Bulletin of the Seismological Society of America, 2018, 108, 815-835.	2.3	9
30	Assessing the Applicability of Groundâ€Motion Models for Induced Seismicity Application in Central and Eastern North America. Bulletin of the Seismological Society of America, 2018, 108, 2265-2277.	2.3	9
31	A Referenced Empirical Ground-Motion Model for Arias Intensity and Cumulative Absolute Velocity Based on the NGA-East Database. Bulletin of the Seismological Society of America, 2020, 110, 508-518.	2.3	9
32	Probabilistic Seismic Loss Analysis for the Design of Steel Structures: Optimizing for Multiple-Objective Functions. Earthquake Spectra, 2016, 32, 1587-1605.	3.1	8
33	A New Approach to Estimate a Mixed Model–Based Ground Motion Prediction Equation. Earthquake Spectra, 2007, 23, 665-684.	3.1	7
34	A Comparison of Different Approaches to Incorporate Site Effects into PSHA: A Case Study for a Liquefied Natural Gas Tank. Bulletin of the Seismological Society of America, 2017, 107, 2927-2947.	2.3	7
35	Relationships among Various Definitions of Horizontal Spectral Accelerations in Central and Eastern North America. Bulletin of the Seismological Society of America, 2018, 108, 409-417.	2.3	7
36	Ranking of Ground-Motion Models (GMMs) for Use in Probabilistic Seismic Hazard Analysis for Iran Based on an Independent Data Set. Bulletin of the Seismological Society of America, 2021, 111, 242-257.	2.3	7

3

#	Article	IF	CITATIONS
37	A Stochastic Approach in Estimating the Pseudo-Relative Spectral Velocity. Earthquake Spectra, 1998, 14, 301-317.	3.1	6
38	Comparative study on parameter estimation methods for attenuation relationships. Journal of Geophysics and Engineering, 2016, 13, 912-927.	1.4	5
39	The importance of non-spectral intensity measures on the risk-based structural responses. Soil Dynamics and Earthquake Engineering, 2019, 120, 97-112.	3.8	5
40	Assessing Predictive Capability of Groundâ€Motion Models for Probabilistic Seismic Hazard in Iran. Bulletin of the Seismological Society of America, 2019, 109, 2073-2087.	2.3	5
41	Comparison of Nonlinear Static Procedures and Modeling Assumptions for the Seismic Design of Ordinary Bridges. Practice Periodical on Structural Design and Construction, 2017, 22, 04016022.	1.3	4
42	Investigation of coda and body wave attenuation functions in Central Asia. Journal of Seismology, 2019, 23, 1047-1070.	1.3	4
43	Comparison of Static and Dynamic Lateral Stiffnesses of a Driven Pile. Journal of Bridge Engineering, 2001, 6, 131-135.	2.9	3
44	A ground-motion prediction model for small-to-moderate induced earthquakes for Central and Eastern United States. Earthquake Spectra, 2021, 37, 1440-1459.	3.1	3
45	A Ground-Motion Model for the Gulf Coast Region of the United States. Bulletin of the Seismological Society of America, 0, , .	2.3	3
46	Using metaheuristic algorithms to optimize a mixed model-based ground-motion prediction model and associated variance components. Journal of Seismology, 0, , .	1.3	3
47	A Generalization of the Stochastic Summation Scheme of Small Earthquakes to Simulate Strong Ground Motions. Pure and Applied Geophysics, 2020, 177, 3713-3732.	1.9	2
48	A New Model for Vertical-to-Horizontal Response Spectral Ratios for Central and Eastern North America. Bulletin of the Seismological Society of America, 2022, 112, 2018-2030.	2.3	2
49	GIS in Seismic Evaluation of Essential Facilities. Computer-Aided Civil and Infrastructure Engineering, 1994, 9, 271-280.	9.8	1
50	Identification of Input Ground Motion Records for Seismic Design Using Neuro-fuzzy Pattern Recognition and Genetic Algorithms. , 2004, , $1.$		1
51	A study of horizontal-to-vertical component spectral ratio as a proxy for site classification in central Asia. Geophysical Journal International, 2020, 223, 1355-1377.	2.4	1
52	Sensitivity analysis of the seismic demands of RC moment resisting frames to different aspects of ground motions., 2017, 46, 2739.		1
53	Inelastic Displacement Spectra for Bridges Using the Substitute-Structure Method. Practice Periodical on Structural Design and Construction, 2016, 21, 04015020.	1.3	0
54	The Impact of Non-Spectral Intensity Measures on the Structural Responses., 2018,,.		0