
Yuchao Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4486492/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Engineering solid–liquid-gas interfaces of single-atom cobalt catalyst for enhancing the robust stability of neutral Zn-air batteries under high current density. Chemical Engineering Journal, 2022, 433, 133685.	6.6	23
2	A reduced pressure-assisted vapor penetration of ionic liquid into the laminated graphene oxide membranes for efficient CO2 separation. Separation and Purification Technology, 2022, 287, 120514.	3.9	10
3	Multifunctional reduced graphene oxide film as electrocatalysts and photothermal layer for broad spectrum solar-enhanced oxygen evolution reaction. Materials Today Energy, 2022, 25, 100966.	2.5	6
4	Pd/Mg(OH) ₂ /MgO–ZrO ₂ Nanocomposite Systems for Highly Efficient Suzuki–Miyaura Coupling Reaction at Room Temperature: Implications for Low-Carbon Green Organic Synthesis. ACS Applied Nano Materials, 2022, 5, 8059-8069.	2.4	3
5	Coupling solarâ€driven interfacial evaporation with forward osmosis for continuous water treatment. Exploration, 2022, 2, .	5.4	29
6	Origami-Based Bionic Reactor. Industrial & Engineering Chemistry Research, 2021, 60, 4279-4289.	1.8	7
7	A Hierarchical-Structured Impeller with Engineered Pd Nanoparticles Catalyzing Suzuki Coupling Reactions for High-Purity Biphenyl. ACS Applied Materials & Interfaces, 2021, 13, 17429-17438.	4.0	16
8	MOF-Mediated Interfacial Polymerization to Fabricate Polyamide Membranes with a Homogeneous Nanoscale Striped Turing Structure for CO ₂ /CH ₄ Separation. ACS Applied Materials & Interfaces, 2021, 13, 18380-18388.	4.0	26
9	Polyamide membrane with an ultrathin GO interlayer on macroporous substrate for minimizing internal concentration polarization in forward osmosis. Chemical Engineering Journal, 2021, 412, 128607.	6.6	57
10	Enhanced solar-driven evaporation process via f-MWCNTs/PVDF photothermal membrane for forward osmosis draw solution recovery. Nanotechnology, 2021, 32, 375703.	1.3	2
11	Discovery of Quantitative Electronic Structureâ€OER Activity Relationship in Metalâ€Organic Framework Electrocatalysts Using an Integrated Theoreticalâ€Experimental Approach. Advanced Functional Materials, 2021, 31, 2102066.	7.8	114
12	Electronic structure engineering through Fe-doping CoP enables hydrogen evolution coupled with electro-Fenton. Nano Energy, 2021, 84, 105943.	8.2	64
13	Adjustable photothermal device induced by magnetic field for efficient solarâ€driven desalination. EcoMat, 2021, 3, e12139.	6.8	14
14	Bodipy-Containing Porous Microcapsules for Flow Heterogeneous Photocatalysis. ACS Applied Materials & Interfaces, 2021, 13, 38722-38731.	4.0	15
15	Advanced thin-film nanocomposite membranes embedded with organic-based nanomaterials for water and organic solvent purification: A review. Separation and Purification Technology, 2021, 269, 118719.	3.9	37
16	Controllable amorphization engineering on bimetallic metal–organic frameworks for ultrafast oxygen evolution reaction. Chemical Engineering Journal, 2021, 418, 129330.	6.6	51
17	Sandwich-like hierarchical porous dual-carbon catalyst with more accessible sites for boosting oxygen reduction reaction. Materials Today Energy, 2021, 21, 100809.	2.5	6
18	A facile and economic route assisted by trace tannic acid to construct a high-performance thin film composite NF membrane for desalination. Environmental Science: Water Research and Technology, 2021, 7, 956-968.	1.2	9

YUCHAO WANG

#	Article	IF	CITATIONS
19	Single Atom Catalysts for Fuel Cells and Rechargeable Batteries: Principles, Advances, and Opportunities. ACS Nano, 2021, 15, 210-239.	7.3	199
20	Bilayer rGOâ€Based Photothermal Evaporator for Efficient Solarâ€Driven Water Purification [[] []] **. Chemistry - A European Journal, 2021, 27, 17428-17436.	1.7	14
21	Designing Atomic Active Centers for Hydrogen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2020, 59, 20794-20812.	7.2	257
22	Microstructure regulation of polyamide nanocomposite membrane by functional mesoporous polymer for high-efficiency desalination. Journal of Membrane Science, 2020, 597, 117783.	4.1	41
23	Regulating the coordination structure of metal single atoms for efficient electrocatalytic CO ₂ reduction. Energy and Environmental Science, 2020, 13, 4609-4624.	15.6	188
24	Preparation of ZrO ₂ -Based Catalytic Fibers via the Assistance of Microfluidic Chips. Industrial & Engineering Chemistry Research, 2020, 59, 21592-21601.	1.8	3
25	Rational 3D Coiled Morphology for Efficient Solar-Driven Desalination. Environmental Science & Technology, 2020, 54, 16240-16248.	4.6	35
26	Multifunctional Nickel Sulfide Nanosheet Arrays for Solarâ€intensified Oxygen Evolution Reaction. Small, 2020, 16, e2002550.	5.2	25
27	Engineering of Electronic States on Co ₃ O ₄ Ultrathin Nanosheets by Cation Substitution and Anion Vacancies for Oxygen Evolution Reaction. Small, 2020, 16, e2001571.	5.2	98
28	Atomic-scale engineering of chemical-vapor-deposition-grown 2D transition metal dichalcogenides for electrocatalysis. Energy and Environmental Science, 2020, 13, 1593-1616.	15.6	166
29	Wettable photothermal hollow fibers arrays for efficient solar-driven desalination under omnidirectional illumination without salt precipitation. Materials Today Energy, 2020, 16, 100391.	2.5	22
30	Design aktiver atomarer Zentren für HERâ€Elektrokatalysatoren. Angewandte Chemie, 2020, 132, 20978-20998.	1.6	18
31	Multifunctional perovskite oxide for efficient solar-driven evaporation and energy-saving regeneration. Nano Energy, 2020, 70, 104538.	8.2	32
32	Nanocomposite membranes embedded with dopamine-melanin nanospheres for enhanced interfacial compatibility and nanofiltration performance. Separation and Purification Technology, 2020, 242, 116816.	3.9	26
33	Solar-Intensified Ultrafiltration System Based on Porous Photothermal Membrane for Efficient Water Treatment. ACS Sustainable Chemistry and Engineering, 2019, 7, 4889-4896.	3.2	27
34	A GO-Induced Assembly Strategy To Repair MOF Nanosheet-Based Membrane for Efficient H ₂ /CO ₂ Separation. ACS Applied Materials & Interfaces, 2019, 11, 990-997.	4.0	63
35	A Facile and General Strategy to Deposit Polypyrrole on Various Substrates for Efficient Solarâ€Đriven Evaporation. Advanced Sustainable Systems, 2019, 3, 1800108.	2.7	52
36	Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3D photothermal cones. Journal of Materials Chemistry A, 2018, 6, 9874-9881.	5.2	266

YUCHAO WANG

#	Article	IF	CITATIONS
37	A facile nanocomposite strategy to fabricate a rGO–MWCNT photothermal layer for efficient water evaporation. Journal of Materials Chemistry A, 2018, 6, 963-971.	5.2	256
38	Efficient and Anisotropic Fog Harvesting on a Hybrid and Directional Surface. Advanced Materials Interfaces, 2017, 4, 1600801.	1.9	58
39	Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. Journal of Materials Chemistry A, 2017, 5, 16212-16219.	5.2	259
40	Bio-inspired immobilization of metal oxides on monolithic microreactor for continuous Knoevenagel reaction. Journal of Colloid and Interface Science, 2016, 481, 100-106.	5.0	13
41	Preparing electrochemical active hierarchically porous carbons for detecting nitrite in drinkable water. RSC Advances, 2016, 6, 7302-7309.	1.7	12
42	Self-Floating Carbon Nanotube Membrane on Macroporous Silica Substrate for Highly Efficient Solar-Driven Interfacial Water Evaporation. ACS Sustainable Chemistry and Engineering, 2016, 4, 1223-1230.	3.2	440
43	A General, Green Chemistry Approach for Immobilization of Inorganic Catalysts in Monolithic Porous Flow-Reactors. ACS Sustainable Chemistry and Engineering, 2016, 4, 1602-1610.	3.2	20
44	A facile strategy for the fabrication of a bioinspired hydrophilic–superhydrophobic patterned surface for highly efficient fog-harvesting. Journal of Materials Chemistry A, 2015, 3, 18963-18969.	5.2	171
45	Multifunctional fluorescent material based on metallomicelles trapped in silica nanochannels. Journal of Materials Chemistry C, 2014, 2, 1962-1965.	2.7	9
46	Facile synthesis of highly graphitized porous carbon monoliths with a balance on crystallization and pore-structure. Journal of Materials Chemistry A, 2014, 2, 12785-12791.	5.2	43
47	Synthesis of hierarchically porous silica film with controllable surface wettability. International Nano Letters, 2014, 4, 1.	2.3	23
48	Phase change in modified hierarchically porous monolith: An extra energy increase. Microporous and Mesoporous Materials, 2014, 193, 69-76.	2.2	25
49	Bio-inspired high performance electrochemical supercapacitors based on conducting polymer modified coral-like monolithic carbon. Journal of Materials Chemistry A, 2013, 1, 8876.	5.2	51
50	Hierarchically porous tungstophosphoric acid/silica hybrid for high performance vis-light photocatalysis. Journal of Environmental Chemical Engineering, 2013, 1, 719-727.	3.3	8
51	Hierarchically porous silica as an efficient catalyst carrier for high performance vis-light assisted Fenton degradation. Microporous and Mesoporous Materials, 2013, 176, 178-185.	2.2	39
52	A reverse membrane emulsification process based on a hierarchically porous monolith for high efficiency water–oil separation. Journal of Materials Chemistry A, 2013, 1, 1701-1708.	5.2	64
53	Superwetting monolithic carbon with hierarchical structure as supercapacitor materials. Microporous and Mesoporous Materials, 2012, 163, 249-258.	2.2	28
54	Superwetting monolithic SiO2 with hierarchical structure for oil removal. Journal of Materials Chemistry, 2011, 21, 11901.	6.7	68

#	Article	IF	CITATIONS
55	High performance adsorbents based on hierarchically porous silica for purifying multicomponent wastewater. Journal of Materials Chemistry, 2011, 21, 15567.	6.7	78