Basile Gallet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4486266/publications.pdf

Version: 2024-02-01

516561 501076 35 782 16 28 h-index citations g-index papers 35 35 35 498 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inverse cascade suppression and shear-layer formation in magnetohydrodynamic turbulence subject to a guide field and misaligned rotation. Journal of Fluid Mechanics, 2022, 935, .	1.4	2
2	Velocity-informed upper bounds on the convective heat transport induced by internal heat sources and sinks. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20210034.	1.6	3
3	Near-Inertial Waves and Turbulence Driven by the Growth of Swell. Journal of Physical Oceanography, 2021, 51, 1337-1351.	0.7	2
4	Enhanced dynamo growth in nonhomogeneous conducting fluids. Physical Review E, 2021, 104, 015110.	0.8	4
5	A Quantitative Scaling Theory for Meridional Heat Transport in Planetary Atmospheres and Oceans. AGU Advances, 2021, 2, e2020AV000362.	2.3	12
6	Experimental observation of the geostrophic turbulence regime of rapidly rotating convection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
7	On the role of the Prandtl number in convection driven by heat sources and sinks. Journal of Fluid Mechanics, 2020, 900, .	1.4	9
8	Near-resonant instability of geostrophic modes: beyond Greenspan's theorem. Journal of Fluid Mechanics, 2020, 900, .	1.4	16
9	Onset of three-dimensionality in rapidly rotating turbulent flows. Journal of Fluid Mechanics, 2020, 901, .	1.4	9
10	Quantitative Experimental Observation of Weak Inertial-Wave Turbulence. Physical Review Letters, 2020, 125, 254502.	2.9	32
11	Shortcut to Geostrophy in Wave-Driven Rotating Turbulence: The Quartetic Instability. Physical Review Letters, 2020, 124, 124501.	2.9	28
12	The vortex gas scaling regime of baroclinic turbulence. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4491-4497.	3. 3	19
13	Dynamo saturation down to vanishing viscosity: strong-field and inertial scaling regimes. Journal of Fluid Mechanics, 2019, 864, 971-994.	1.4	3
14	Transition to the ultimate regime in a radiatively driven convection experiment. Journal of Fluid Mechanics, 2019, 861, .	1.4	48
15	Convection driven by internal heat sources and sinks: Heat transport beyond the mixing-length or "ultimate―scaling regime. Physical Review Fluids, 2019, 4, .	1.0	16
16	Radiative heating achieves the ultimate regime of thermal convection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8937-8941.	3.3	56
17	Surface-wave Doppler velocimetry in a liquid metal: Inferring the bifurcations of the subsurface flow. Europhysics Letters, 2017, 119, 24001.	0.7	O
18	Transition to Turbulent Dynamo Saturation. Physical Review Letters, 2017, 119, 204503.	2.9	8

#	Article	IF	Citations
19	Turbulent drag in a rotating frame. Journal of Fluid Mechanics, 2016, 794, .	1.4	14
20	Exact two-dimensionalization of low-magnetic-Reynolds-number flows subject to a strong magnetic field. Journal of Fluid Mechanics, 2015, 773, 154-177.	1.4	41
21	Exact two-dimensionalization of rapidly rotating large-Reynolds-number flows. Journal of Fluid Mechanics, 2015, 783, 412-447.	1.4	44
22	Drifting patterns as field reversals. Europhysics Letters, 2015, 112, 54007.	0.7	3
23	Disentangling inertial waves from eddy turbulence in a forced rotating-turbulence experiment. Physical Review E, 2015, 91, 043016.	0.8	37
24	Direct and inverse energy cascades in a forced rotating turbulence experiment. Physics of Fluids, 2014, 26, .	1.6	57
25	Scale-dependent cyclone-anticyclone asymmetry in a forced rotating turbulence experiment. Physics of Fluids, 2014, 26, 035108.	1.6	33
26	Refraction of swell by surface currents. Journal of Marine Research, 2014, 72, 105-126.	0.3	41
27	Spatial variations of magnetic permeability as a source of dynamo action. Journal of Fluid Mechanics, 2013, 727, 161-190.	1.4	13
28	A two-dimensional vortex condensate at high Reynolds number. Journal of Fluid Mechanics, 2013, 715, 359-388.	1.4	33
29	Experimental Observation of Spatially Localized Dynamo Magnetic Fields. Physical Review Letters, 2012, 108, 144501.	2.9	14
30	Dynamo action due to spatially dependent magnetic permeability. Europhysics Letters, 2012, 97, 69001.	0.7	8
31	Reversals of a large-scale field generated over a turbulent background. Geophysical and Astrophysical Fluid Dynamics, 2012, 106, 468-492.	0.4	43
32	Dynamo regimes and transitions in the VKS experiment. European Physical Journal B, 2010, 77, 459-468.	0.6	70
33	Bistability between a stationary and an oscillatory dynamo in a turbulent flow of liquid sodium. Journal of Fluid Mechanics, 2009, 641, 217-226.	1.4	25
34	Influence of an external magnetic field on forced turbulence in a swirling flow of liquid metal. Physics of Fluids, 2009, 21, .	1.6	23
35	Oscillatory instability of interacting grains in a turbulent flow. Europhysics Letters, 2009, 87, 54004.	0.7	3