Caroline M S Straatman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/448624/publications.pdf

Version: 2024-02-01

58 papers 2,988 citations

30 h-index 54 g-index

58 all docs 58 docs citations

58 times ranked 2543 citing authors

#	Article	IF	CITATIONS
1	GALAXY STELLAR MASS FUNCTIONS FROM ZFOURGE/CANDELS: AN EXCESS OF LOW-MASS GALAXIES SINCE < i>z < /i> = 2 AND THE RAPID BUILDUP OF QUIESCENT GALAXIES. Astrophysical Journal, 2014, 783, 85.	4.5	350
2	THE SFR–M _* RELATION AND EMPIRICAL STAR FORMATION HISTORIES FROM ZFOURGE AT 0.5 < z < 4*. Astrophysical Journal, 2016, 817, 118.	4.5	241
3	A SUBSTANTIAL POPULATION OF MASSIVE QUIESCENT GALAXIES AT <i>z</i> â^1/4 4 FROM ZFOURGE. Astrophysical Journal Letters, 2014, 783, L14.	8.3	171
4	A massive, quiescent galaxy at a redshift of 3.717. Nature, 2017, 544, 71-74.	27.8	167
5	THE FOURSTAR GALAXY EVOLUTION SURVEY (ZFOURGE): ULTRAVIOLET TO FAR-INFRARED CATALOGS, MEDIUM-BANDWIDTH PHOTOMETRIC REDSHIFTS WITH IMPROVED ACCURACY, STELLAR MASSES, AND CONFIRMATION OF QUIESCENT GALAXIES TO zÂâ^1/4Â3.5*. Astrophysical Journal, 2016, 830, 51.	4.5	166
6	THE BRIGHT END OF THE zÂâ^1⁄4Â9 AND zÂâ^1⁄4Â10 UV LUMINOSITY FUNCTIONS USING ALL FIVE CANDELS FIELDS FIELDS<a <i="" a="" at="" candidate="" cluster="" discovery="" fourge:="" href="fillo</td><td>4.5</td><td>110</td></tr><tr><td>7</td><td>Effect of Local Environment and Stellar Mass on Galaxy Quenching and Morphology at 0.5 < z < 2.0<sup>*</sup>. Astrophysical Journal, 2017, 847, 134.</td><td>4.5</td><td>106</td></tr><tr><td>8</td><td>FIRST RESULTS FROM <i>Z</i> â€" of="">z = 2.2 IN COSMOS. Astrophysical Journal Letters, 2012, 748, L21.	8.3	104
9	EXPLORING THE <i>z</i> = 3-4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES. Astrophysical Journal Letters, 2014, 787, L36.	8.3	80
10	The Large Early Galaxy Astrophysics Census (LEGA-C) Data Release 2: Dynamical and Stellar Population Properties of zÂ≲Â1 Galaxies in the COSMOS Field. Astrophysical Journal, Supplement Series, 2018, 239, 27.	7.7	74
11	Fast and Slow Paths to Quiescence: Ages and Sizes of 400 Quiescent Galaxies from the LEGA-C Survey. Astrophysical Journal, 2018, 868, 37.	4.5	72
12	THE SIZES OF MASSIVE QUIESCENT AND STAR-FORMING GALAXIES AT <i>z</i> â ¹ / ₄ 4 WITH ZFOURGE AND CANDELS. Astrophysical Journal Letters, 2015, 808, L29.	8.3	64
13	KECK/MOSFIRE SPECTROSCOPIC CONFIRMATION OF A VIRGO-LIKE CLUSTER ANCESTOR AT $\langle i \rangle z \langle j \rangle = 2.095$. Astrophysical Journal Letters, 2014, 795, L20.	8.3	63
14	THE ABSENCE OF AN ENVIRONMENTAL DEPENDENCE IN THE MASSâ€"METALLICITY RELATION AT ⟨i⟩z⟨ i⟩ = 2. Astrophysical Journal Letters, 2015, 802, L26.	8.3	58
15	The Size Evolution of Star-forming Galaxies since zÂâ^¼Â7 Using ZFOURGE. Astrophysical Journal Letters, 2017, 834, L11.	8.3	57
16	The Effects of Environment on the Evolution of the Galaxy Stellar Mass Function. Astrophysical Journal, 2018, 854, 30.	4.5	55
17	ZFIRE: GALAXY CLUSTER KINEMATICS, $H < i > \hat{l} + < / i > STAR$ FORMATION RATES, AND GAS PHASE METALLICITIES OF XMM-LSS J02182-05102 AT $\{z\}_{mathrm{cl}}=1.6233$ \$. Astrophysical Journal, 2015, 811, 28.	4.5	54
18	ZFIRE: A KECK/MOSFIRE SPECTROSCOPIC SURVEY OF GALAXIES IN RICH ENVIRONMENTS AT z $\hat{a}^{1}/4$ 2. Astrophysical Journal, 2016, 828, 21.	4.5	53

#	Article	IF	Citations
19	Spatially Resolved Stellar Kinematics from LEGA-C: Increased Rotational Support in zÂâ^¼Â0.8 Quiescent Galaxies. Astrophysical Journal, 2018, 858, 60.	4.5	52
20	The Large Early Galaxy Astrophysics Census (LEGA-C) Data Release 3: 3000 High-quality Spectra of K _s -selected Galaxies at z > 0.6. Astrophysical Journal, Supplement Series, 2021, 256, 44.	7.7	52
21	SATELLITE QUENCHING AND GALACTIC CONFORMITY AT 0.3 < z < 2.5*. Astrophysical Journal, 2016, 817, 9.	4.5	50
22	Molecular Gas Contents and Scaling Relations for Massive, Passive Galaxies at Intermediate Redshifts from the LEGA-C Survey. Astrophysical Journal, 2018, 860, 103.	4.5	48
23	ZFOURGE catalogue of AGN candidates: an enhancement of 160^{1} /4m-derived star formation rates in active galaxies to <i>z</i> Â=Â3.2. Monthly Notices of the Royal Astronomical Society, 2016, 457, 629-641.	4.4	45
24	Stellar Populations of over 1000 zÂâ^1/4Â0.8 Galaxies from LEGA-C: Ages and Star Formation Histories from D _n 4000 and HÎ'. Astrophysical Journal, 2018, 855, 85.	4.5	45
25	COLD-MODE ACCRETION: DRIVING THE FUNDAMENTAL MASS–METALLICITY RELATION AT zÂâ^¼Â2. Astrophys Journal Letters, 2016, 826, L11.	ical 8.3	45
26	Rejuvenation in zÂâ^¼Â0.8 Quiescent Galaxies in LEGA-C. Astrophysical Journal, 2019, 877, 48.	4.5	41
27	Star Formation Histories of zÂâ^¼Â1 Galaxies in LEGA-C. Astrophysical Journal, 2018, 861, 13.	4.5	36
28	The Colors and Sizes of Recently Quenched Galaxies: A Result of Compact Starburst before Quenching. Astrophysical Journal, 2020, 888, 77.	4.5	36
29	Discovery of Extreme [O iii]+ $H\hat{l}^2$ Emitting Galaxies Tracing an Overdensity at z \hat{a}^4 3.5 in CDF-South(sup) \hat{a} -(sup). Astrophysical Journal Letters, 2017, 838, L12.	8.3	32
30	THE DIFFERENTIAL SIZE GROWTH OF FIELD AND CLUSTER GALAXIES AT $\langle i \rangle z \langle j \rangle = 2.1$ USING THE ZFOURGE SURVEY. Astrophysical Journal, 2015, 806, 3.	4.5	31
31	UV TO IR LUMINOSITIES AND DUST ATTENUATION DETERMINED FROM â ¹ / ₄ 4000 K-SELECTED GALAXIES AT 1 < < 3 IN THE ZFOURGE SURVEY*. Astrophysical Journal Letters, 2016, 818, L26.	Z _{8.3}	27
32	ZFIRE: The Evolution of the Stellar Mass Tully–Fisher Relation to Redshift â^¼2.2. Astrophysical Journal, 2017, 839, 57.	4.5	26
33	Stellar Dynamics and Star Formation Histories of zÂâ^1/4Â1 Radio-loud Galaxies. Astrophysical Journal, 2017, 847, 72.	4.5	26
34	Z-FIRE: ISM PROPERTIES OF THE <i>>z</i> = 2.095 COSMOS CLUSTER. Astrophysical Journal, 2016, 819, 100.	4.5	25
35	THE DISTRIBUTION OF SATELLITES AROUND MASSIVE GALAXIES AT 1 < <i>z</i> < 3 IN ZFOURGE/CANDELS: DEPENDENCE ON STAR FORMATION ACTIVITY. Astrophysical Journal, 2014, 792, 103.	4.5	24
36	ZFOURGE: Using Composite Spectral Energy Distributions to Characterize Galaxy Populations at 1Â<ÂzÂ<Â4 ^{â^—} . Astrophysical Journal, 2018, 863, 131.	4.5	24

#	Article	IF	CITATIONS
37	1D Kinematics from Stars and Ionized Gas at zÂâ^1/4Â0.8 from the LEGA-C Spectroscopic Survey of Massive Galaxies. Astrophysical Journal Letters, 2018, 868, L36.	8.3	24
38	Inverse stellar population age gradients of post-starburst galaxies at zÂ= 0.8 with LEGA-C. Monthly Notices of the Royal Astronomical Society, 2020, 497, 389-404.	4.4	22
39	ZFIRE: using Hα equivalent widths to investigate the in situ initial mass function at zÂâ^¼Â2. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3071-3108.	4.4	19
40	The Fundamental Plane in the LEGA-C Survey: Unraveling the M/L Ratio Variations of Massive Star-forming and Quiescent Galaxies at z $\hat{a}^{1/4}$ 0.8. Astrophysical Journal, 2021, 913, 103.	4.5	19
41	DIFFERENCES IN THE STRUCTURAL PROPERTIES AND STAR FORMATION RATES OF FIELD AND CLUSTER GALAXIES AT Z â^1/4 1. Astrophysical Journal, 2016, 826, 60.	4.5	17
42	ZFIRE: 3D Modeling of Rotation, Dispersion, and Angular Momentum of Star-forming Galaxies at z $\hat{a}^{1}/4$ 2. Astrophysical Journal, 2018, 858, 47.	4.5	16
43	MOSEL: Strong [Oiii] 5007 Ã Emitting Galaxies at (3 < z < 4) from the ZFOURGE Survey. Astrophysical Journal, 2020, 898, 45.	4.5	16
44	Consistent Dynamical and Stellar Masses with Potential Light IMF in Massive Quiescent Galaxies at 3 & lt; 2 & lt; 4 Using Velocity Dispersions Measurements with MOSFIRE. Astrophysical Journal Letters, 2021, 908, L35.	8.3	16
45	ZFIRE: THE KINEMATICS OF STAR-FORMING GALAXIES AS A FUNCTION OF ENVIRONMENT AT z â^1/4 2. Astrophysical Journal Letters, 2016, 825, L2.	8.3	14
46	ZFIRE: SIMILAR STELLAR GROWTH IN Hα-EMITTING CLUSTER AND FIELD GALAXIES AT z â^¼ 2. Astrophysical Journal, 2017, 834, 101.	4.5	14
47	Reconstructing the Observed Ionizing Photon Production Efficiency at z $\hat{a}^{1/4}$ 2 Using Stellar Population Models. Astrophysical Journal, 2020, 889, 180.	4.5	14
48	Stellar Kinematics and Environment at zÂâ^1/4Â0.8 in the LEGA-C Survey: Massive Slow Rotators Are Built First in Overdense Environments. Astrophysical Journal Letters, 2020, 890, L25.	8.3	12
49	Stellar Dynamical Models for 797 z â^¼ 0.8 Galaxies from LEGA-C. Astrophysical Journal, 2021, 923, 11.	4.5	11
50	A giant galaxy in the young Universe with a massive ring. Nature Astronomy, 2020, 4, 957-964.	10.1	9
51	Toward Precise Galaxy Evolution: A Comparison between Spectral Indices of z â^1/41 Galaxies in the IllustrisTNG Simulation and the LEGA-C Survey. Astronomical Journal, 2021, 162, 201.	4.7	9
52	A Tale of Two Clusters: An Analysis of Gas-phase Metallicity and Nebular Gas Conditions in Proto-cluster Galaxies at zÂâ ¹ ¼Â2. Astrophysical Journal, 2019, 883, 153.	4.5	8
53	Tightly Coupled Morpho-kinematic Evolution for Massive Star-forming and Quiescent Galaxies across 7 Gyr of Cosmic Time. Astrophysical Journal Letters, 2020, 903, L30.	8.3	8
54	Ubiquitous [O ii] Emission in Quiescent Galaxies at z \hat{a} % 0.85 from the LEGA-C Survey*. Astrophysical Journal, 2021, 923, 18.	4.5	8

#	Article	IF	CITATIONS
55	The LEGA-C of Nature and Nurture in Stellar Populations at z â^⅓ 0.6–1.0: D _n 4000 and Hδ Reveal Different Assembly Histories for Quiescent Galaxies in Different Environments. Astrophysical Journal, 2022, 926, 117.	4.5	8
56	Dust Attenuation Curves at z $\hat{a}^{1/4}$ 0.8 from LEGA-C: Precise Constraints on the Slope and 2175 \tilde{A} \hat{A} Bump Strength. Astrophysical Journal, 2020, 903, 146.	4.5	7
57	Introducing the FLAMINGOS-2 Split-K Medium-band Filters: The Impact on Photometric Selection of High-z Galaxies in the FENIKS-pilot survey. Astronomical Journal, 2021, 162, 225.	4.7	5
58	LEGA-C: Analysis of Dynamical Masses from Ionized Gas and Stellar Kinematics at z â 1 /4 0.8. Astrophysical Journal, 2022, 928, 126.	4.5	2