Yuhan Ling

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4486017/yuhan-ling-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

14	1,840	13	15
papers	citations	h-index	g-index
15	2,227 ext. citations	13.8	5.06
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
14	Identifying the physicochemical properties of Exyclodextrin polymers that determine the adsorption of perfluoroalkyl acids <i>Water Research</i> , 2021 , 209, 117938	12.5	2
13	Evaluating the effects of water matrix constituents on micropollutant removal by activated carbon and Eyclodextrin polymer adsorbents. <i>Water Research</i> , 2020 , 173, 115551	12.5	21
12	ECyclodextrin Polymers on Microcrystalline Cellulose as a Granular Media for Organic Micropollutant Removal from Water. <i>ACS Applied Materials & Distributed & Distributed & Distributed & Distributed & Distributed & Distrib</i>	9.5	35
11	Reduction of a Tetrafluoroterephthalonitrile-ECyclodextrin Polymer to Remove Anionic Micropollutants and Perfluorinated Alkyl Substances from Water. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 12049-12053	16.4	63
10	Reduction of a Tetrafluoroterephthalonitrile-ECyclodextrin Polymer to Remove Anionic Micropollutants and Perfluorinated Alkyl Substances from Water. <i>Angewandte Chemie</i> , 2019 , 131, 121	77 ² †21	81 ²²
9	Cross-linker Chemistry Determines the Uptake Potential of Perfluorinated Alkyl Substances by ECyclodextrin Polymers. <i>Macromolecules</i> , 2019 , 52, 3747-3752	5.5	38
8	QSARs to predict adsorption affinity of organic micropollutants for activated carbon and Exyclodextrin polymer adsorbents. <i>Water Research</i> , 2019 , 154, 217-226	12.5	32
7	Phenolation of cyclodextrin polymers controls their lead and organic micropollutant adsorption. <i>Chemical Science</i> , 2018 , 9, 8883-8889	9.4	39
6	Removal of GenX and Perfluorinated Alkyl Substances from Water by Amine-Functionalized Covalent Organic Frameworks. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12677-12681	16.4	165
5	Benchmarking Micropollutant Removal by Activated Carbon and Porous Ecyclodextrin Polymers under Environmentally Relevant Scenarios. <i>Environmental Science & Environmental Sci</i>	59 ^{80.3}	82
4	ECyclodextrin Polymer Network Sequesters Perfluorooctanoic Acid at Environmentally Relevant Concentrations. <i>Journal of the American Chemical Society</i> , 2017 , 139, 7689-7692	16.4	184
3	Super-hydrophilic and fouling resistant PVDF ultrafiltration membranes based on a facile prefabricated surface. <i>Journal of Membrane Science</i> , 2017 , 541, 529-540	9.6	39
2	Rapid removal of organic micropollutants from water by a porous Etyclodextrin polymer. <i>Nature</i> , 2016 , 529, 190-4	50.4	1038
1	Magnetically separable core-shell structural Fe2O3@Cu/Al-MCM-41 nanocomposite and its performance in heterogeneous Fenton catalysis. <i>Journal of Hazardous Materials</i> , 2014 , 264, 195-202	12.8	79