
David M Kipping

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4485936/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2152-2160.	4.4	549
2	PROBABILISTIC FORECASTING OF THE MASSES AND RADII OF OTHER WORLDS. Astrophysical Journal, 2017, 834, 17.	4.5	474
3	A disintegrating minor planet transiting a white dwarf. Nature, 2015, 526, 546-549.	27.8	367
4	Binning is sinning: morphological light-curve distortions due to finite integration time. Monthly Notices of the Royal Astronomical Society, 2010, 408, 1758-1769.	4.4	256
5	Parametrizing the exoplanet eccentricity distribution with the Beta distribution. Monthly Notices of the Royal Astronomical Society: Letters, 2013, 434, L51-L55.	3.3	220
6	Transit timing effects due to an exomoon. Monthly Notices of the Royal Astronomical Society, 2009, 392, 181-189.	4.4	219
7	CfA4: LIGHT CURVES FOR 94 TYPE Ia SUPERNOVAE. Astrophysical Journal, Supplement Series, 2012, 200, 12.	7.7	153
8	The Detection and Characterization of a Nontransiting Planet by Transit Timing Variations. Science, 2012, 336, 1133-1136.	12.6	150
9	THE HUNT FOR EXOMOONS WITH <i>KEPLER</i> (HEK). I. DESCRIPTION OF A NEW OBSERVATIONAL PROJECT. Astrophysical Journal, 2012, 750, 115.	4.5	146
10	A planet within the debris disk around the pre-main-sequence star AU Microscopii. Nature, 2020, 582, 497-500.	27.8	145
11	KOI-142, THE KING OF TRANSIT VARIATIONS, IS A PAIR OF PLANETS NEAR THE 2:1 RESONANCE. Astrophysical Journal, 2013, 777, 3.	4.5	135
12	Transit timing effects due to an exomoon - II. Monthly Notices of the Royal Astronomical Society, 2009, 396, 1797-1804.	4.4	134
13	Evidence for a large exomoon orbiting Kepler-1625b. Science Advances, 2018, 4, eaav1784.	10.3	125
14	VALIDATION OF 12 SMALL <i>KEPLER</i> TRANSITING PLANETS IN THE HABITABLE ZONE. Astrophysical Journal, 2015, 800, 99.	4.5	122
15	Formation, Habitability, and Detection of Extrasolar Moons. Astrobiology, 2014, 14, 798-835.	3.0	120
16	HAT-P-20b–HAT-P-23b: FOUR MASSIVE TRANSITING EXTRASOLAR PLANETS. Astrophysical Journal, 2011, 742, 116.	4.5	117
17	METHANE IN THE ATMOSPHERE OF THE TRANSITING HOT NEPTUNE GJ436B?. Astrophysical Journal, 2011, 731, 16.	4.5	110
18	HAT-P-26b: A LOW-DENSITY NEPTUNE-MASS PLANET TRANSITING A K STAR. Astrophysical Journal, 2011, 728, 138	4.5	109

#	Article	IF	CITATIONS
19	On the detectability of habitable exomoons with <i>Kepler</i> -class photometry. Monthly Notices of the Royal Astronomical Society, 2009, 400, 398-405.	4.4	103
20	HEK. VI. On the Dearth of Galilean Analogs in Kepler, and the Exomoon Candidate Kepler-1625b I. Astronomical Journal, 2018, 155, 36.	4.7	103
21	Water in the atmosphere of HD 209458b from 3.6-8 μm IRAC photometric observations in primary transit. Monthly Notices of the Royal Astronomical Society, 2010, 409, 963-974.	4.4	99
22	EChO. Experimental Astronomy, 2012, 34, 311-353.	3.7	98
23	MOST OBSERVATIONS OF OUR NEAREST NEIGHBOR: FLARES ON PROXIMA CENTAURI. Astrophysical Journal Letters, 2016, 829, L31.	8.3	93
24	Investigations of approximate expressions for the transit duration. Monthly Notices of the Royal Astronomical Society, 2010, 407, 301-313.	4.4	91
25	A Second Terrestrial Planet Orbiting the Nearby M Dwarf LHS 1140. Astronomical Journal, 2019, 157, 32.	4.7	83
26	THE HUNT FOR EXOMOONS WITH <i>KEPLER </i> (HEK). V. A SURVEY OF 41 PLANETARY CANDIDATES FOR EXOMOONS. Astrophysical Journal, 2015, 813, 14.	4.5	80
27	THE HUNT FOR EXOMOONS WITH KEPLER (HEK). II. ANALYSIS OF SEVEN VIABLE SATELLITE-HOSTING PLANET CANDIDATES. Astrophysical Journal, 2013, 770, 101.	4.5	79
28	THE HUNT FOR EXOMOONS WITH <i>KEPLER</i> (HEK). IV. A SEARCH FOR MOONS AROUND EIGHT M DWARFS. Astrophysical Journal, 2014, 784, 28.	4.5	79
29	REVISED MASSES AND DENSITIES OF THE PLANETS AROUND KEPLER-10*. Astrophysical Journal, 2016, 819, 83.	4.5	74
30	AN INDEPENDENT ANALYSIS OF KEPLER-4b THROUGH KEPLER-8b. Astrophysical Journal, 2011, 730, 50.	4.5	71
31	Characterizing distant worlds with asterodensity profiling. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2164-2184.	4.4	71
32	A HIGH FALSE POSITIVE RATE FOR <i>KEPLER</i> PLANETARY CANDIDATES OF GIANT STARS USING ASTERODENSITY PROFILING. Astrophysical Journal, 2014, 788, 148.	4.5	71
33	KEPLER-432: A RED GIANT INTERACTING WITH ONE OF ITS TWO LONG-PERIOD GIANT PLANETS. Astrophysical Journal, 2015, 803, 49.	4.5	70
34	Detection of a transit by the planetary companion of HD 80606. Monthly Notices of the Royal Astronomical Society: Letters, 2009, 396, L16-L20.	3.3	69
35	Transiting planets - light-curve analysis for eccentric orbits. Monthly Notices of the Royal Astronomical Society, 2008, 389, 1383-1390.	4.4	67
36	HAT-P-14b: A 2.2 <i>M</i> _J EXOPLANET TRANSITING A BRIGHT F STAR. Astrophysical Journal, 2010, 715, 458-467.	4.5	67

#	Article	IF	CITATIONS
37	THE HUNT FOR EXOMOONS WITH KEPLER (HEK). III. THE FIRST SEARCH FOR AN EXOMOON AROUND A HABITABLE-ZONE PLANET. Astrophysical Journal, 2013, 777, 134.	4.5	64
38	Detection of visible light from the darkest world. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 417, L88-L92.	3.3	61
39	STELLAR ROTATION-PLANETARY ORBIT PERIOD COMMENSURABILITY IN THE HAT-P-11 SYSTEM. Astrophysical Journal, 2014, 788, 1.	4.5	61
40	A NOVEL METHOD FOR IDENTIFYING EXOPLANETARY RINGS. Astrophysical Journal Letters, 2015, 803, L14.	8.3	61
41	ANALYSIS OF <i>KEPLER </i> 'S SHORT-CADENCE PHOTOMETRY FOR TrES-2b. Astrophysical Journal, 2011, 733, 36.	4.5	60
42	Dynamical effects on the habitable zone for Earth-like exomoons. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2994-3004.	4.4	60
43	spotrod: a semi-analytic model for transits of spotted stars. Monthly Notices of the Royal Astronomical Society, 2014, 442, 3686-3699.	4.4	54
44	Nightside pollution of exoplanet transit depths. Monthly Notices of the Royal Astronomical Society, 0, 407, 2589-2598.	4.4	50
45	Bayesian priors for the eccentricity of transiting planets. Monthly Notices of the Royal Astronomical Society, 2014, 444, 2263-2269.	4.4	46
46	Know the Planet, Know the Star: Precise Stellar Densities from Kepler Transit Light Curves. Astronomical Journal, 2017, 154, 228.	4.7	44
47	Jupiter Analogs Orbit Stars with an Average Metallicity Close to That of the Sun. Astrophysical Journal, 2018, 856, 37.	4.5	44
48	luna: an algorithm for generating dynamic planet-moon transits. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	4.4	40
49	An analytic model for rotational modulations in the photometry of spotted stars. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2487-2511.	4.4	40
50	A TRANSITING JUPITER ANALOG. Astrophysical Journal, 2016, 820, 112.	4.5	40
51	A novel method to photometrically constrain orbital eccentricities: Multibody Asterodensity Profiling. Monthly Notices of the Royal Astronomical Society, 2012, 421, 1166-1188.	4.4	39
52	PHOTO-DYNAMICAL ANALYSIS OF THREE KEPLER OBJECTS OF INTEREST WITH SIGNIFICANT TRANSIT TIMING VARIATIONS. Astrophysical Journal, 2014, 790, 31.	4.5	39
53	HAT-P-24b: AN INFLATED HOT JUPITER ON A 3.36 DAY PERIOD TRANSITING A HOT, METAL-POOR STAR. Astrophysical Journal, 2010, 725, 2017-2028.	4.5	37
54	A cloaking device for transiting planets. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1233-1241.	4.4	35

#	Article	IF	CITATIONS
55	No Conclusive Evidence for Transits of Proxima b in MOST Photometry. Astronomical Journal, 2017, 153, 93.	4.7	34
56	Observational biases for transiting planets. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1323-1331.	4.4	33
57	Masses of Kepler-46b, c from Transit Timing Variations. Astronomical Journal, 2017, 153, 198.	4.7	32
58	Forecasted masses for 7000 Kepler Objects of Interest. Monthly Notices of the Royal Astronomical Society, 2018, 473, 2753-2759.	4.4	32
59	An exomoon survey of 70 cool giant exoplanets and the new candidate Kepler-1708 b-i. Nature Astronomy, 2022, 6, 367-380.	10.1	32
60	The EChO science case. Experimental Astronomy, 2015, 40, 329-391.	3.7	31
61	Finding mountains with molehills: the detectability of exotopography. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4978-4985.	4.4	31
62	The multiplicity distribution of Kepler's exoplanets. Monthly Notices of the Royal Astronomical Society, 2019, 489, 3162-3173.	4.4	31
63	Stellar Rotation in the K2 Sample: Evidence for Modified Spin-down. Astrophysical Journal, 2021, 913, 70.	4.5	29
64	DISCOVERY OF A TRANSITING PLANET NEAR THE SNOW-LINE. Astrophysical Journal, 2014, 795, 25.	4.5	27
65	A machine learns to predict the stability of circumbinary planets. Monthly Notices of the Royal Astronomical Society, 2018, 476, 5692-5697.	4.4	27
66	A resonant pair of warm giant planets revealed by TESS. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4980-4986.	4.4	27
67	HAT-P-31b,c: A TRANSITING, ECCENTRIC, HOT JUPITER AND A LONG-PERIOD, MASSIVE THIRD BODY. Astronomical Journal, 2011, 142, 95.	4.7	26
68	Forecasting the detectability of known radial velocity planets with the upcoming CHEOPS mission. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3090-3097.	4.4	23
69	Proxima Centauri b is not a transiting exoplanet. Monthly Notices of the Royal Astronomical Society, 2019, 487, 268-274.	4.4	21
70	How to weigh a star using a moon. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 409, L119-L123.	3.3	20
71	An objective Bayesian analysis of life's early start and our late arrival. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11995-12003.	7.1	20
72	Loose Ends for the Exomoon Candidate Host Kepler-1625b. Astronomical Journal, 2020, 159, 142.	4.7	20

#	Article	IF	CITATIONS
73	THE POSSIBLE MOON OF KEPLER-90g IS A FALSE POSITIVE. Astrophysical Journal Letters, 2015, 799, L14.	8.3	19
74	On the detectability of transiting planets orbiting white dwarfs using LSST. Monthly Notices of the Royal Astronomical Society, 2019, 488, 1695-1703.	4.4	19
75	Do planets remember how they formed?. Monthly Notices of the Royal Astronomical Society, 2018, 473, 784-795.	4.4	18
76	Small angle neutron scattering at very high time resolution: Principle and simulations of â€~TISANE'. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 1541-1546.	2.1	17
77	Transit clairvoyance: enhancing <i>TESS</i> follow-up using artificial neural networks. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3495-3505.	4.4	17
78	Exploring extrasolar worlds: from gas giants to terrestrial habitable planets. Faraday Discussions, 2010, 147, 369.	3.2	16
79	The exomoon corridor: Half of all exomoons exhibit TTV frequencies within a narrow window due to aliasing. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1851-1857.	4.4	16
80	FLICKER AS A TOOL FOR CHARACTERIZING PLANETS THROUGH ASTERODENSITY PROFILING. Astrophysical Journal Letters, 2014, 785, L32.	8.3	15
81	On the Rate of Abiogenesis from a Bayesian Informatics Perspective. Astrobiology, 2018, 18, 1574-1584.	3.0	15
82	Kepler's dark worlds: a low albedo for an ensemble of Neptunian and Terran exoplanets. Monthly Notices of the Royal Astronomical Society, 2018, 478, 3025-3041.	4.4	15
83	Detection of the phase curve and occultation of WASP-100b with <i>TESS</i> . Monthly Notices of the Royal Astronomical Society, 2020, 494, 4077-4089.	4.4	15
84	An Independent Analysis of the Six Recently Claimed Exomoon Candidates. Astrophysical Journal Letters, 2020, 900, L44.	8.3	15
85	Contact inequality: first contact will likely be with an older civilization. International Journal of Astrobiology, 2020, 19, 430-437.	1.6	14
86	A hardcore model for constraining an exoplanet's core size. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2613-2620.	4.4	13
87	Relativistic Light Sails. Astronomical Journal, 2017, 153, 277.	4.7	13
88	The Orbital Period Prior for Single Transits. Research Notes of the AAS, 2018, 2, 223.	0.7	13
89	A simple, quantitative method to infer the minimum atmospheric height of small exoplanets. Monthly Notices of the Royal Astronomical Society, 2013, 434, 1883-1888.	4.4	12
90	Efficient, uninformative sampling of limb-darkening coefficients for a three-parameter law. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1680-1690.	4.4	12

#	Article	IF	CITATIONS
91	Shadow Imaging of Transiting Objects. Astronomical Journal, 2019, 157, 42.	4.7	11
92	The weird detector: flagging periodic, coherent signals of arbitrary shape in time-series photometry. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5498-5510.	4.4	10
93	TRAPPIST-1e Has a Large Iron Core. Research Notes of the AAS, 2018, 2, 31.	0.7	10
94	Not gone with the wind: Planet occurrence is independent of stellar galactocentric velocity. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2505-2510.	4.4	9
95	8 in 10 Stars in the Milky Way Bulge experience stellar encounters within 1000 AU in a gigayear. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2105-2111.	4.4	9
96	Transit origami: a method to coherently fold exomoon transits in time series photometry. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4120-4131.	4.4	8
97	The science of EChO. Proceedings of the International Astronomical Union, 2010, 6, 359-370.	0.0	5
98	Identification and Mitigation of a Vibrational Telescope Systematic with Application to Spitzer. Planetary Science Journal, 2021, 2, 9.	3.6	5
99	Validation of HD 183579b Using Archival Radial Velocities: A Warm Neptune Orbiting a Bright Solar Analog. Astrophysical Journal Letters, 2021, 909, L6.	8.3	5
100	Predicting The Orbit of TRAPPIST-1i. Research Notes of the AAS, 2018, 2, 136.	0.7	5
101	A Stationary Drake Equation Distribution as a Balance of Birth-death Processes. Research Notes of the AAS, 2021, 5, 44.	0.7	4
102	Black swans in astronomical data. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4054-4061.	4.4	4
103	Transiting Quasites as a Possible Technosignature. Research Notes of the AAS, 2019, 3, 91.	0.7	4
104	A Bayesian Approach to the Simulation Argument. Universe, 2020, 6, 109.	2.5	3
105	Mathematical encoding within multiresonant planetary systems as SETI beacons. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4945-4950.	4.4	3
106	The "Terrascope― On the Possibility of Using the Earth as an Atmospheric Lens. Publications of the Astronomical Society of the Pacific, 2019, 131, 114503.	3.1	2
107	Hundreds of new periodic signals detected in the first year of TESS with the weirddetector. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4011-4023.	4.4	2
108	On planetary systems as ordered sequences. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2224-2246.	4.4	2

#	Article	IF	CITATIONS
109	Formulation and resolutions of the red sky paradox. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	2
110	Identifying potential exomoon signals with convolutional neural networks. Monthly Notices of the Royal Astronomical Society, 2021, 508, 2620-2633.	4.4	2
111	Transit Timing Effects Due to an Exomoon. , 2011, , 127-164.		2
112	Detection of the Occultation of 55 Cancri e with TESS. Research Notes of the AAS, 2020, 4, 170.	0.7	2
113	PROBABILISTIC INFERENCE OF BASIC STELLAR PARAMETERS: APPLICATION TO FLICKERING STARS*. Astrophysical Journal Letters, 2016, 823, L9.	8.3	1
114	Over 2000 Kepler Phase Curves from Phasma. Research Notes of the AAS, 2018, 2, 14.	0.7	1
115	The number of transits per epoch for transiting misaligned circumbinary planets. Monthly Notices of the Royal Astronomical Society, 2022, 513, 5162-5173.	4.4	1
116	Eccentric Planets & Transit Time Variation. Proceedings of the International Astronomical Union, 2008, 4, 490-491.	0.0	0
117	The detectability of habitable exomoons. Proceedings of the International Astronomical Union, 2009, 5, 705-705.	0.0	0
118	Transit Distortions. , 2011, , 93-126.		0
119	Timing the Transit. , 2011, , 57-91.		0
120	Detectability of Habitable Exomoons with \$\$oldsymbol {it Kepler}\$\$ -Class Photometry. , 2011, , 165-182.		0
121	The Transiting Planet. , 2011, , 37-56.		0
122	A Periodogram of Every Kepler Target and a Common Artifact at â^1⁄480 minutes. Research Notes of the AAS, 2018, 2, 15.	0.7	0
123	Could the †Wow' signal have originated from a stochastic repeating beacon?. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	0