
Martin C Garnett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4485793/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Delivery of acetogenin-enriched Annona muricata Linn leaf extract by folic acid-conjugated and triphenylphosphonium-conjugated poly(glycerol adipate) nanoparticles to enhance toxicity against ovarian cancer cells. International Journal of Pharmaceutics, 2022, 618, 121636.	2.6	9
2	Development and optimisation of simulated salivary fluid for biorelevant oral cavity dissolution. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 160, 125-133.	2.0	10
3	ls rat a good model for assessment of particulate-based taste-masked formulations?. European Journal of Pharmaceutics and Biopharmaceutics, 2020, 146, 1-9.	2.0	5
4	Poly (Glycerol Adipate): From a Functionalized Nanocarrier to a Polymeric-Prodrug Matrix to Create Amorphous Solid Dispersions. Journal of Pharmaceutical Sciences, 2020, 109, 1347-1355.	1.6	14
5	A simple and efficient method for polymer coating of iron oxide nanoparticles. Journal of Drug Delivery Science and Technology, 2020, 55, 101460.	1.4	14
6	Nanoformulation-by-design: an experimental and molecular dynamics study for polymer coated drug nanoparticles. RSC Advances, 2020, 10, 19521-19533.	1.7	12
7	Polymer nanoparticle as a delivery system for ribavirin: Do nanoparticle avoid uptake by Red Blood Cells?. Journal of Drug Delivery Science and Technology, 2020, 56, 101552.	1.4	12
8	Screening and Matching Polymers with Drugs to Improve Drug Incorporation and Retention in Nanoparticles. Molecular Pharmaceutics, 2020, 17, 2083-2098.	2.3	11
9	Exploring the enzymatic degradation of poly(glycerol adipate). European Journal of Pharmaceutics and Biopharmaceutics, 2019, 142, 377-386.	2.0	24
10	Poly (glycerol adipate) (PGA), an Enzymatically Synthesized Functionalizable Polyester and Versatile Drug Delivery Carrier: A Literature Update. Polymers, 2019, 11, 1561.	2.0	29
11	Penetration and Uptake of Nanoparticles in 3D Tumor Spheroids. Bioconjugate Chemistry, 2019, 30, 1371-1384.	1.8	141
12	Application of biorelevant saliva-based dissolution for optimisation of orally disintegrating formulations of felodipine. International Journal of Pharmaceutics, 2019, 555, 228-236.	2.6	15
13	Intermolecular interaction and solid state characterization of abietic acid/chitosan solid dispersions possessing antimicrobial and antioxidant properties. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 125, 114-123.	2.0	36
14	MicroRNA-Based Drugs for Brain Tumors. Trends in Cancer, 2018, 4, 222-238.	3.8	54
15	Water Solubility Enhancement of Pyrazolo[3,4- <i>d</i>]pyrimidine Derivatives via Miniaturized Polymer–Drug Microarrays. ACS Medicinal Chemistry Letters, 2018, 9, 193-197.	1.3	10
16	Comparison of Gene Transfection and Cytotoxicity Mechanisms of Linear Poly(amidoamine) and Branched Poly(ethyleneimine) Polyplexes. Pharmaceutical Research, 2018, 35, 86.	1.7	11
17	Synthesis and properties of a biodegradable polymer-drug conjugate: Methotrexate-poly(glycerol) Tj ETQq1 1	0.784314 rg 2.5	gBT ₃ Qverloc
	Highâ€Throughout Miniaturized Screening of Nanonarticle Formation via Indiet Printing		

Highâ€Throughput Miniaturized Screening of Nanoparticle Formation via Inkjet Printing. Macromolecular Materials and Engineering, 2018, 303, 1800146.

1.7 8

#	Article	IF	CITATIONS
19	Synthesis of nucleoside-boronic esters hydrophobic pro-drugs: A possible route to improve hydrophilic nucleoside drug loading into polymer nanoparticles. Journal of Drug Delivery Science and Technology, 2018, 46, 354-364.	1.4	17
20	In Silico Screening for Solid Dispersions: The Trouble with Solubility Parameters and χFH. Molecular Pharmaceutics, 2018, 15, 4654-4667.	2.3	35
21	Enhanced nanoparticle uptake into virus infected cells: Could nanoparticles be useful in antiviral therapy?. International Journal of Pharmaceutics, 2018, 547, 572-581.	2.6	29
22	Rapid Nanogram Scale Screening Method of Microarrays to Evaluate Drug–Polymer Blends Using High-Throughput Printing Technology. Molecular Pharmaceutics, 2017, 14, 2079-2087.	2.3	12
23	High-Throughput Spheroid Screens Using Volume, Resazurin Reduction, and Acid Phosphatase Activity. Methods in Molecular Biology, 2017, 1601, 43-59.	0.4	8
24	Magnetic Resonance Imaging Quantification of Fasted State Colonic Liquid Pockets in Healthy Humans. Molecular Pharmaceutics, 2017, 14, 2629-2638.	2.3	49
25	New N-acyl amino acid-functionalized biodegradable polyesters for pharmaceutical and biomedical applications. RSC Advances, 2016, 6, 109401-109405.	1.7	25
26	Properties of acyl modified poly(glycerol-adipate) comb-like polymers and their self-assembly into nanoparticles. Journal of Polymer Science Part A, 2016, 54, 3267-3278.	2.5	45
27	Penetration and intracellular uptake of poly(glycerol-adipate) nanoparticles into three-dimensional brain tumour cell culture models. Experimental Biology and Medicine, 2016, 241, 466-477.	1.1	19
28	In vitro co-culture model of medulloblastoma and human neural stem cells for drug delivery assessment. Journal of Biotechnology, 2015, 205, 3-13.	1.9	52
29	Multiplexing Spheroid Volume, Resazurin and Acid Phosphatase Viability Assays for High-Throughput Screening of Tumour Spheroids and Stem Cell Neurospheres. PLoS ONE, 2014, 9, e103817.	1.1	176
30	Basement membrane influences intestinal epithelial cell growth and presents a barrier to the movement of macromolecules. Experimental Cell Research, 2014, 323, 218-231.	1.2	68
31	Quantification of Gastrointestinal Liquid Volumes and Distribution Following a 240 mL Dose of Water in the Fasted State. Molecular Pharmaceutics, 2014, 11, 3039-3047.	2.3	360
32	Enhanced uptake of nanoparticle drug carriers via a thermoresponsive shell enhances cytotoxicity in a cancer cell line. Biomaterials Science, 2013, 1, 434.	2.6	63
33	Epithelial Toxicity of Alkylglycoside Surfactants. Journal of Pharmaceutical Sciences, 2013, 102, 114-125.	1.6	16
34	Uptake and transport of B 12 -conjugated nanoparticles in airway epithelium. Journal of Controlled Release, 2013, 172, 374-381.	4.8	36
35	Nanoparticle Transport in Epithelial Cells: Pathway Switching Through Bioconjugation. Small, 2013, 9, 3282-3294.	5.2	50
36	Correction: Potentiation of Anti-Carcinoembryonic Antigen Immunotoxin Cytotoxicity by Monoclonal Antibodies Reacting with Co-Expressed Carcinoembryonic Antigen Epitopes. Journal of Immunology, 2013, 191, 2019-2019.	0.4	8

#	Article	IF	CITATIONS
37	The anthelmintic efficacy of papaya latex in a rodent–nematode model is not dependent on fasting before treatment. Journal of Helminthology, 2012, 86, 311-316.	0.4	8
38	Ligand density and clustering effects on endocytosis of folate modified nanoparticles. RSC Advances, 2012, 2, 3025.	1.7	54
39	Evaluation of calcium depletion as a strategy for enhancement of mucosal absorption of macromolecules. Biochemical and Biophysical Research Communications, 2012, 418, 128-133.	1.0	6
40	Absorption-promoting effects of chitosan in airway and intestinal cell lines: A comparative study. International Journal of Pharmaceutics, 2012, 430, 151-160.	2.6	63
41	Fc-mediated transport of nanoparticles across airway epithelial cell layers. Journal of Controlled Release, 2012, 158, 479-486.	4.8	41
42	Barrier characteristics of epithelial cultures modelling the airway and intestinal mucosa: A comparison. Biochemical and Biophysical Research Communications, 2011, 415, 579-585.	1.0	33
43	Oral dosing with papaya latex is an effective anthelmintic treatment for sheep infected with Haemonchus contortus. Parasites and Vectors, 2011, 4, 36.	1.0	45
44	Thermoresponsive Polymer Colloids for Drug Delivery and Cancer Therapy. Macromolecular Bioscience, 2011, 11, 1722-1734.	2.1	90
45	Gene therapy used for tissue engineering applicationsâ€. Journal of Pharmacy and Pharmacology, 2010, 59, 329-350.	1.2	51
46	Medulloblastoma in childhood: revisiting intrathecal therapy in infants and children. Cancer Chemotherapy and Pharmacology, 2010, 65, 1173-1189.	1.1	16
47	Tight junction modulation by chitosan nanoparticles: Comparison with chitosan solution. International Journal of Pharmaceutics, 2010, 400, 183-193.	2.6	197
48	Facile synthesis of responsive nanoparticles with reversible, tunable and rapid thermal transitions from biocompatible constituents. Chemical Communications, 2009, , 6068.	2.2	21
49	Sterically stabilized self-assembling reversibly cross-linked polyelectrolyte complexes with nucleic acids for environmental and medical applications. Biochemical Society Transactions, 2009, 37, 713-716.	1.6	11
50	Targeting of polyamidoamine–DNA nanoparticles using the Staudinger ligation: Attachment of an RGD motif either before or after complexation. Bioorganic and Medicinal Chemistry, 2008, 16, 6641-6650.	1.4	26
51	Drug incorporation and release of water soluble drugs from novel functionalised poly(glycerol) Tj ETQq1 1 0.784	314 rgBT 4.8	/Overlock 10
52	Three-dimensional cerebrospinal fluid flow within the human ventricular system. Computer Methods in Biomechanics and Biomedical Engineering, 2008, 11, 123-133.	0.9	41
53	Evaluation of Poly (Glycerol-Adipate) Nanoparticle Uptake in an <i>In Vitro</i> 3-D Brain Tumor Co-Culture Model. Experimental Biology and Medicine, 2007, 232, 1100-1108.	1.1	34
54	Development of a slow non-viral DNA release system from PDLLA scaffolds fabricated using a supercritical CO2 technique. Biotechnology and Bioengineering, 2007, 98, 679-693.	1.7	30

#	Article	IF	CITATIONS
55	Uptake and metabolism of novel biodegradable poly (glycerol-adipate) nanoparticles in DAOY monolayer. Journal of Controlled Release, 2006, 116, 314-321.	4.8	47
56	Nanomedicines and nanotoxicology: some physiological principles. Occupational Medicine, 2006, 56, 307-311.	0.8	298
57	The assessment of hookworm calreticulin as a potential vaccine for necatoriasis. Parasite Immunology, 2005, 27, 139-146.	0.7	28
58	NANOMEDICINES: DELIVERING DRUGS USING BOTTOM UP NANOTECHNOLOGY. International Journal of Nanoscience, 2005, 04, 855-861.	0.4	5
59	Differences in the adsorption behaviour of poly(ethylene oxide) copolymers onto model polystyrene nanoparticles assessed by isothermal titration microcalorimetry correspond to the biological differences. Journal of Drug Targeting, 2005, 13, 449-458.	2.1	4
60	Novel Functionalized Biodegradable Polymers for Nanoparticle Drug Delivery Systems. Biomacromolecules, 2005, 6, 1885-1894.	2.6	129
61	The effect of poly(ethylene glycol) molecular architecture on cellular interaction and uptake of DNA complexes. Journal of Controlled Release, 2004, 97, 143-156.	4.8	118
62	Characterisation of poly(lactic acid):poly(ethyleneoxide) (PLA:PEG) nanoparticles using the self-consistent theory modelling approach. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 212, 57-64.	2.3	8
63	Coreâ~ Shell Structure of PLAâ~ PEG Nanoparticles Used for Drug Delivery. Langmuir, 2003, 19, 8428-8435.	1.6	135
64	Effect of Polymer Ionization on the Interaction with DNA in Nonviral Gene Delivery Systems. Biomacromolecules, 2003, 4, 683-690.	2.6	123
65	715 Biodistribution of radiolabelled liposomal doxorublcin in mice by scintigraphic imaging. European Journal of Cancer, Supplement, 2003, 1, S215-S216.	2.2	1
66	Use of Viscoelastic Measurements for Investigating Interparticle Interactions in Dispersions of Micellar-like Poly(lactic acid)â~'Poly(ethylene glycol) Nanoparticles. Langmuir, 2002, 18, 7663-7668.	1.6	7
67	Poly(lactic acid)â^'Poly(ethylene oxide) (PLAâ^'PEG) Nanoparticles:Â NMR Studies of the Central Solidlike PLA Core and the Liquid PEG Corona. Langmuir, 2002, 18, 3669-3675.	1.6	181
68	Development of multicomponent DNA delivery systems based upon poly(amidoamine)–PEG co-polymers. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1576, 269-286.	2.4	26
69	Influence of polymer architecture on the structure of complexes formed by PEG–tertiary amine methacrylate copolymers and phosphorothioate oligonucleotide. Journal of Controlled Release, 2002, 81, 185-199.	4.8	62
70	Physicochemical Evaluation of Nanoparticles Assembled from Poly(lactic acid)â^'Poly(ethylene glycol) (PLAâ^'PEG) Block Copolymers as Drug Delivery Vehicles. Langmuir, 2001, 17, 3168-3174.	1.6	268
71	The effect of surface coverage and conformation of poly(ethylene oxide) (PEO) chains of poloxamer 407 on the biological fate of model colloidal drug carriers. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1514, 261-279.	1.4	125
72	Polylactide-poly(ethylene Glycol) Micellar-like Particles as Potential Drug Carriers: Production, Colloidal Properties and Biological Performance. Journal of Drug Targeting, 2001, 9, 361-378.	2.1	76

#	Article	IF	CITATIONS
73	Microscopic Investigations into PEGâ^'Cationic Polymer-Induced DNA Condensation. Langmuir, 2001, 17, 3185-3193.	1.6	65
74	Self-consistent field modelling of poly(lactic acid)–poly(ethylene glycol) particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 179, 79-91.	2.3	17
75	Determination of Protection from Serum Nuclease Activity by DNA–Polyelectrolyte Complexes Using an Electrophoretic Method. Analytical Biochemistry, 2001, 291, 62-68.	1.1	36
76	Preparation and characterisation of rose Bengal-loaded surface-modified albumin nanoparticles. Journal of Controlled Release, 2001, 71, 117-126.	4.8	60
77	Copolymers of amine methacrylate with poly(ethylene glycol) as vectors for gene therapy. Journal of Controlled Release, 2001, 73, 359-380.	4.8	125
78	Targeted drug conjugates: principles and progress. Advanced Drug Delivery Reviews, 2001, 53, 171-216.	6.6	250
79	Defining the drug incorporation properties of PLA–PEG nanoparticles. International Journal of Pharmaceutics, 2000, 199, 95-110.	2.6	197
80	Polymer chemical structure is a key determinant of physicochemical and colloidal properties of polymer–DNA complexes for gene delivery. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2000, 1517, 1-18.	2.4	77
81	Colloidal stability and drug incorporation aspects of micellar-like PLA–PEG nanoparticles. Colloids and Surfaces B: Biointerfaces, 1999, 16, 147-159.	2.5	190
82	Preparation and in vitro characterization of HSA-mPEG nanoparticles. International Journal of Pharmaceutics, 1999, 189, 161-170.	2.6	46
83	PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. Journal of Controlled Release, 1999, 57, 171-185.	4.8	868
84	In vitro cytotoxicity of poly(amidoamine)s: relevance to DNA delivery. Biochimica Et Biophysica Acta - General Subjects, 1999, 1427, 161-174.	1.1	63
85	Gene-Delivery Systems Using Cationic Polymers. Critical Reviews in Therapeutic Drug Carrier Systems, 1999, 16, 61.	1.2	186
86	Modification of the copolymers poloxamer 407 and poloxamine 908 can affect the physical and biological properties of surface modified nanospheres. Pharmaceutical Research, 1998, 15, 318-324.	1.7	23
87	In Vitro Displacement by Rat Serum of Adsorbed Radiolabeled Poloxamer and Poloxamine Copolymers from Model and Biodegradable Nanospheres. Journal of Pharmaceutical Sciences, 1998, 87, 1242-1248.	1.6	53
88	Mechanism of Free and Conjugated Neocarzinostatin Activity: Studies on Chromophore and Protein Uptake Using a Transferrin-Neocarzinostatin Conjugate. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 1997, 52, 245-254.	0.6	2
89	In vitro cell interaction and in vivo biodistribution of poly(lactide-co-glycolide) nanospheres surface modified by poloxamer and poloxamine copolymers. Journal of Controlled Release, 1997, 44, 65-76.	4.8	136
90	Adsorption behaviour and conformation of selected poly(ethylene oxide) copolymers on the surface of a model colloidal drug carrier. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1997, 122, 151-159.	2.3	28

#	Article	IF	CITATIONS
91	Preparation of surface-modified albumin nanospheres. Biomaterials, 1997, 18, 559-565.	5.7	58
92	Long circulating biodegradable poly(phosphazene) nanoparticles surface modified with poly(phosphazene)-poly(ethylene oxide) copolymer. Biomaterials, 1997, 18, 1147-1152.	5.7	58
93	Polylactideâ^'Poly(ethylene glycol) Copolymers as Drug Delivery Systems. 1. Characterization of Water Dispersible Micelle-Forming Systems. Langmuir, 1996, 12, 2153-2161.	1.6	314
94	Nanospheres prepared from poly(?-malic acid) benzyl ester copolymers: evidence for their in vitro degradation. Journal of Materials Science: Materials in Medicine, 1996, 7, 161-166.	1.7	5
95	The colloidal properties of surfactant-free biodegradable nanospheres from poly(β-malic) Tj ETQq1 1 0.784314 rg and Engineering Aspects, 1995, 97, 235-245.	gBT /Overlo 2.3	lock 10 Tf 50 75
96	Estimation of the Poly(ethylene glycol) Chain Length of L-Polylactide-Polyethylene Glycol in Aqueous Dispersions Using Viscoelastic Measurements. Langmuir, 1995, 11, 1482-1485.	1.6	21
97	Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Pharmaceutical Research, 1994, 11, 1800-1808.	1.7	265
98	Preparation of sterically stabilized human serum albumin nanospheres using a novel Dextranox-MPEG crosslinking agent. Pharmaceutical Research, 1994, 11, 1588-1592.	1.7	38
99	Synthesis of 2'-deoxyuridine and 5-fluoro-2'-deoxyuridine derivatives and evaluation in antibody targeting studies. Journal of Medicinal Chemistry, 1993, 36, 1570-1579.	2.9	25
100	The influence of synthetic conditions on the stability of methotrexate-monoclonal antibody conjugates determined by reversed phase high performance liquid chromatography. Biomedical Chromatography, 1992, 6, 128-132.	0.8	22
101	Increased serum stability and prolonged biological half-life of neocarzinostatin covalently bound to monoclonal antibodies Journal of Antibiotics, 1991, 44, 1148-1154.	1.0	7
102	A novel flow cytometric method for measuring protein digestion within the phagocytic vacuole of polymorphonuclear neutrophils. Journal of Immunological Methods, 1990, 135, 155-161.	0.6	7
103	Mouse IgG2b monoclonal antibody fragmentation. Journal of Immunological Methods, 1989, 121, 209-217.	0.6	20
104	Tetramethyl rhodamine isothiocyanate-human serum albumin-antibody conjugates: a useful reagent for the assessment of endocytosis of cell-surface antigens. Biochemical Society Transactions, 1987, 15, 431-432.	1.6	0
105	Sensitivity of newly established colorectal cell lines to cytotoxic drugs and monoclonal antibody drug conjugates. British Journal of Cancer, 1987, 56, 722-726.	2.9	15
106	Biodistribution of methotrexate-monoclonal antibody conjugates and complexes: experimental and clinical studies. Cancer Treatment Reviews, 1987, 14, 411-420.	3.4	10
107	Demonstration of the potentiation of endocytosis of an anti-CEA antibody by a colon carcinoma cell line using anti-CEA/NCA antibodies. European Journal of Cancer & Clinical Oncology, 1987, 23, 1734.	0.9	0
108	Measurement of tumour reactive antibody and antibody conjugate by competition, quantitated by flow cytofluorimetry. Journal of Immunological Methods, 1986, 90, 165-172.	0.6	21

#	Article	IF	CITATIONS
109	Unsuitability of monoclonal antibodies to oncogene proteins for anti-tumour drug-targeting. International Journal of Cancer, 1986, 38, 821-827.	2.3	8
110	Effect of methotrexate-albumin-monoclonal antibody conjugates on methotrexate-resistant cells. European Journal of Cancer & Clinical Oncology, 1985, 21, 1382.	0.9	1
111	Antigenicity and drug susceptibility of human osteogenic sarcoma cells "escaping―a cytotoxic methotrexate-albumin-monoclonal antibody conjugate. British Journal of Cancer, 1984, 49, 559-565.	2.9	6
112	Studies on the mechanism of action of a drug—carrier-antibody conjugate. Biochemical Society Transactions, 1984, 12, 1035-1036.	1.6	3
113	Preparation and properties of a drug-carrier-antibody conjugate showing selective antibody-directed cytotoxicityin vitro. International Journal of Cancer, 1983, 31, 661-670.	2.3	111