Douglas K Bolton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4485682/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling lidar-derived estimates of forest attributes over space and time: A review of approaches and future trends. Remote Sensing of Environment, 2021, 260, 112477.	11.0	123
2	Characterizing residual structure and forest recovery following high-severity fire in the western boreal of Canada using Landsat time-series and airborne lidar data. Remote Sensing of Environment, 2015, 163, 48-60.	11.0	102
3	Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment, 2018, 216, 697-714.	11.0	99
4	A thirty year, fine-scale, characterization of area burned in Canadian forests shows evidence of regionally increasing trends in the last decade. PLoS ONE, 2018, 13, e0197218.	2.5	58
5	Impact of time on interpretations of forest fragmentation: Three-decades of fragmentation dynamics over Canada. Remote Sensing of Environment, 2019, 222, 65-77.	11.0	43
6	Daily estimates of Landsat fractional snow cover driven by MODIS and dynamic time-warping. Remote Sensing of Environment, 2018, 216, 635-646.	11.0	38
7	Updating stand-level forest inventories using airborne laser scanning and Landsat time series data. International Journal of Applied Earth Observation and Geoinformation, 2018, 66, 174-183.	2.8	33
8	Measuring forest structure along productivity gradients in the Canadian boreal with small-footprint Lidar. Environmental Monitoring and Assessment, 2013, 185, 6617-6634.	2.7	31
9	Evidence of vegetation greening at alpine treeline ecotones: three decades of Landsat spectral trends informed by lidar-derived vertical structure. Environmental Research Letters, 2018, 13, 084022.	5.2	30
10	An Automated Approach to Map the History of Forest Disturbance from Insect Mortality and Harvest with Landsat Time-Series Data. Remote Sensing, 2014, 6, 2782-2808.	4.0	29
11	Assessing variability in postâ€fire forest structure along gradients of productivity in the Canadian boreal using multiâ€source remote sensing. Journal of Biogeography, 2017, 44, 1294-1305.	3.0	28
12	Disentangling vegetation and climate as drivers of Australian vertebrate richness. Ecography, 2018, 41, 1147-1160.	4.5	28
13	Investigating the agreement between global canopy height maps and airborne Lidar derived height estimates over Canada. Canadian Journal of Remote Sensing, 2013, 39, S139-S151.	2.4	26
14	Optimizing Landsat time series length for regional mapping of lidar-derived forest structure. Remote Sensing of Environment, 2020, 239, 111645.	11.0	23
15	Remotely-sensed productivity clusters capture global biodiversity patterns. Scientific Reports, 2018, 8, 16261.	3.3	18
16	Assessing conservation regionalization schemes: employing a beta diversity metric to test the environmental surrogacy approach. Diversity and Distributions, 2014, 20, 503-514.	4.1	15
17	Snow cover mapped daily at 30 meters resolution using a fusion of multi-temporal MODIS NDSI data and Landsat surface reflectance. Canadian Journal of Remote Sensing, 2018, 44, 413-434.	2.4	15
18	Evaluating an Automated Approach for Monitoring Forest Disturbances in the Pacific Northwest from Logging, Fire and Insect Outbreaks with Landsat Time Series Data. Forests, 2014, 5, 3169-3198.	2.1	14

DOUGLAS K BOLTON

#	Article	IF	CITATIONS
19	Uncovering regional variability in disturbance trends between parks and greater park ecosystems across Canada (1985–2015). Scientific Reports, 2019, 9, 1323.	3.3	7
20	FOSTER—An R package for forest structure extrapolation. PLoS ONE, 2021, 16, e0244846.	2.5	6
21	Changing spring snow cover dynamics and early season forage availability affect the behavior of a large carnivore. Clobal Change Biology, 2020, 26, 6266-6275.	9.5	5
22	An Unsupervised Change Detection Method for Lidar Data in Forest Areas Based on Change Vector Analysis in the Polar Domain. , 2018, , .		4