
Fei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4485581/publications.pdf Version: 2024-02-01

FEL WANC

#	Article	IF	CITATIONS
1	Nanosize Effect of Al ₂ O ₃ in Ag/Al ₂ O ₃ Catalyst for the Selective Catalytic Oxidation of Ammonia. ACS Catalysis, 2018, 8, 2670-2682.	5.5	144
2	Resolving the puzzle of single-atom silver dispersion on nanosized Î ³ -Al2O3 surface for high catalytic performance. Nature Communications, 2020, 11, 529.	5.8	111
3	High-performance of Cu-TiO2 for photocatalytic oxidation of formaldehyde under visible light and the mechanism study. Chemical Engineering Journal, 2020, 390, 124481.	6.6	91
4	Insights into the Activation Effect of H ₂ Pretreatment on Ag/Al ₂ O ₃ Catalyst for the Selective Oxidation of Ammonia. ACS Catalysis, 2019, 9, 1437-1445.	5.5	78
5	Facet-dependent performance of anatase TiO2 for photocatalytic oxidation of gaseous ammonia. Applied Catalysis B: Environmental, 2018, 223, 209-215.	10.8	65
6	Specific Role of Potassium in Promoting Ag/Al ₂ O ₃ for Catalytic Oxidation of Formaldehyde at Low Temperature. Journal of Physical Chemistry C, 2018, 122, 27331-27339.	1.5	53
7	Synergistic Effect of TiO ₂ –SiO ₂ in Ag/Si–Ti Catalyst for the Selective Catalytic Oxidation of Ammonia. Industrial & Engineering Chemistry Research, 2018, 57, 11903-11910.	1.8	42
8	Nano-sized Ag rather than single-atom Ag determines CO oxidation activity and stability. Nano Research, 2022, 15, 452-456.	5.8	35
9	Adsorption of gaseous elemental mercury with activated carbon impregnated with ferric chloride. RSC Advances, 2015, 5, 24899-24907.	1.7	28
10	Single atom Fe in favor of carbon disulfide (CS2) adsorption and thus the removal efficiency. Separation and Purification Technology, 2021, 258, 118086.	3.9	28
11	Cu/HZSM-5 Sorbent Treated by NH ₃ Plasma for Low-Temperature Simultaneous Adsorption–Oxidation of H ₂ S and PH ₃ . ACS Applied Materials & Interfaces, 2021, 13, 24670-24681.	4.0	26
12	Simultaneous catalytic hydrolysis of HCN, COS and CS2 over metal-modified microwave coal-based activated carbon. Separation and Purification Technology, 2021, 259, 118205.	3.9	24
13	Promoting effect of acid sites on NH3-SCO activity with water vapor participation for Pt-Fe/ZSM-5 catalyst. Catalysis Today, 2021, 376, 311-317.	2.2	23
14	Supported catalysts for simultaneous removal of SO2, NOx, and Hg0 from industrial exhaust gases: A review. Chinese Chemical Letters, 2021, 32, 2963-2974.	4.8	19
15	Selective adsorption of CH 3 SH on cobalt-modified activated carbon with low oxygen concentration. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75, 156-163.	2.7	18
16	Mn based catalysts for driving high performance of HCN catalytic oxidation to N2 under micro-oxygen and low temperature conditions. Chemical Engineering Journal, 2018, 333, 402-413.	6.6	17
17	Conversion of COS by corona plasma and the effect of simultaneous removal of COS and dust. Chemical Engineering Journal, 2016, 290, 328-334.	6.6	16
18	Coupling catalytic hydrolysis and oxidation on metal-modified activated carbon for HCN removal. RSC Advances, 2016, 6, 57108-57116.	1.7	15

Fei Wang

#	Article	IF	CITATIONS
19	Defects on activated carbon determine the dispersion of active components and thus the simultaneous removal efficiency of SO2, NOx and Hg0. Fuel, 2021, 293, 120391.	3.4	15
20	Adsorption of Carbon Disulfide on Cu/CoSPc/Ce Modified Activated Carbon under Microtherm and Micro-oxygen Conditions. Industrial & Engineering Chemistry Research, 2014, 53, 13626-13634.	1.8	12
21	Surface characterization study of corn-straw biochar catalysts for the simultaneous removal of HCN, COS, and CS ₂ . New Journal of Chemistry, 2020, 44, 13565-13575.	1.4	12
22	Adsorption of carbon disulfide on activated carbon modified by Cu and cobalt sulfonated phthalocyanine. Adsorption, 2015, 21, 401-408.	1.4	11
23	The hydrolysis of hydrogen cyanide over Nb/La–TiOx catalyst. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70, 141-149.	2.7	11
24	Reaction Mechanism of Simultaneous Removal of H2S and PH3 Using Modified Manganese Slag Slurry. Catalysts, 2020, 10, 1384.	1.6	9
25	Pretreated water-quenched-manganese-slag slurry for high-efficiency one-step desulfurization and denitrification. Separation and Purification Technology, 2020, 250, 117164.	3.9	9
26	Simultaneous Removal of PH3, H2S, and Dust by Corona Discharge. Energy & Fuels, 2016, 30, 9580-9588.	2.5	8
27	Adsorption of Gaseous Elemental Mercury by Ferricâ€Chlorideâ€Modified Activated Carbon Under Lowâ€Temperature Conditions. Clean - Soil, Air, Water, 2018, 46, 1800351.	0.7	8
28	Thermal modification of copper slag via phase transformation for simultaneous removal of SO2 and NOx from acid-making tail gas. Chemical Engineering Journal, 2021, 425, 131646.	6.6	8
29	The role of H2O in the removal of methane mercaptan (CH3SH) on Cu/C-PAN catalyst. Applied Surface Science, 2021, 567, 150851.	3.1	6
30	Hydrogen Cyanide Removal over Ti-Al ₂ O ₃ Catalyst: Activity at Low Temperature. Environmental Engineering Science, 2019, 36, 1011-1018.	0.8	3
31	Preparation of MgX/Al ₂ O ₃ -Y sorbent for highly efficient simultaneous removal of hydrogen fluoride and hydrogen chloride under low-temperature environment. Environmental Technology (United Kingdom), 2023, 44, 2230-2243.	1.2	1
32	Research into the simultaneous removal process of H2S and PH3 by Cu–Fe–Ce composite metal oxide adsorbent. Research on Chemical Intermediates, 2020, 46, 4017-4032.	1.3	0