Daniel Barbosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4485520/publications.pdf

Version: 2024-02-01

430874 70 1,228 18 citations papers

33 h-index g-index 70 70 70 1506 docs citations times ranked citing authors all docs

395702

#	Article	IF	CITATIONS
1	Fast automatic myocardial segmentation in 4D cine CMR datasets. Medical Image Analysis, 2014, 18, 1115-1131.	11.6	126
2	B-Spline Explicit Active Surfaces: An Efficient Framework for Real-Time 3-D Region-Based Segmentation. IEEE Transactions on Image Processing, 2012, 21, 241-251.	9.8	107
3	Standardized Evaluation System for Left Ventricular Segmentation Algorithms in 3D Echocardiography. IEEE Transactions on Medical Imaging, 2016, 35, 967-977.	8.9	82
4	The influence of frame rate on two-dimensional speckle-tracking strain measurements: a study on silico-simulated models and images recorded in patients. European Heart Journal Cardiovascular Imaging, 2015, 16, 1137-1147.	1.2	79
5	Two-dimensional speckle tracking echocardiography: standardization efforts based on synthetic ultrasound data. European Heart Journal Cardiovascular Imaging, 2016, 17, 693-701.	1.2	63
6	Detection of the whole myocardium in 2D-echocardiography for multiple orientations using a geometrically constrained level-set. Medical Image Analysis, 2012, 16, 386-401.	11.6	62
7	Fast and Fully Automatic 3-D Echocardiographic Segmentation Using B-Spline Explicit Active Surfaces: Feasibility Study and Validation in a Clinical Setting. Ultrasound in Medicine and Biology, 2013, 39, 89-101.	1.5	58
8	Elastic Image Registration Versus Speckle Tracking for 2-D Myocardial Motion Estimation: A Direct Comparison In Vivo. IEEE Transactions on Medical Imaging, 2013, 32, 449-459.	8.9	55
9	Regional cardiac motion and strain estimation in three-dimensional echocardiography: a validation study in thick-walled univentricular phantoms. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 668-682.	3.0	47
10	Automatic small bowel tumor diagnosis by using multi-scale wavelet-based analysis in wireless capsule endoscopy images. BioMedical Engineering OnLine, $2012,11,3.$	2.7	40
11	Detailed Evaluation of Five 3D Speckle Tracking Algorithms Using Synthetic Echocardiographic Recordings. IEEE Transactions on Medical Imaging, 2016, 35, 1915-1926.	8.9	40
12	Elastic Image Registration to Quantify 3-D Regional Myocardial Deformation from Volumetric Ultrasound: Experimental Validation in an Animal Model. Ultrasound in Medicine and Biology, 2013, 39, 1688-1697.	1.5	30
13	Comparison of a new methodology for the assessment of 3D myocardial strain from volumetric ultrasound with 2D speckle tracking. International Journal of Cardiovascular Imaging, 2012, 28, 1049-1060.	1.5	26
14	Anatomical Image Registration Using Volume Conservation to Assess Cardiac Deformation From 3D Ultrasound Recordings. IEEE Transactions on Medical Imaging, 2016, 35, 501-511.	8.9	24
15	MITT: Medical Image Tracking Toolbox. IEEE Transactions on Medical Imaging, 2018, 37, 2547-2557.	8.9	24
16	Automatic detection of small bowel tumors in capsule endoscopy based on color curvelet covariance statistical texture descriptors., 2009, 2009, 6683-6.		22
17	Fast left ventricle tracking using localized anatomical affine optical flow. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33, e2871.	2.1	20
18	Quantification of left ventricular volume and global function using a fast automated segmentation tool: validation in a clinical setting. International Journal of Cardiovascular Imaging, 2013, 29, 309-316.	1.5	19

#	Article	IF	Citations
19	Left Ventricular Myocardial Segmentation in 3-D Ultrasound Recordings: Effect of Different Endocardial and Epicardial Coupling Strategies. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 525-536.	3.0	19
20	Monogenic Phase Based Optical Flow Computation for Myocardial Motion Analysis in 3D Echocardiography. Lecture Notes in Computer Science, 2013, , 159-168.	1.3	18
21	Whole myocardium tracking in 2D-echocardiography in multiple orientations using a motion constrained level-set. Medical Image Analysis, 2014, 18, 500-514.	11.6	17
22	Real-time 3D interactive segmentation of echocardiographic data through user-based deformation of B-spline explicit active surfaces. Computerized Medical Imaging and Graphics, 2014, 38, 57-67.	5.8	17
23	Semi-automatic outlining of levator hiatus. Ultrasound in Obstetrics and Gynecology, 2016, 48, 98-105.	1.7	16
24	Aortic Valve Tract Segmentation From 3D-TEE Using Shape-Based B-Spline Explicit Active Surfaces. IEEE Transactions on Medical Imaging, 2016, 35, 2015-2025.	8.9	16
25	Multi-centre validation of an automatic algorithm for fast 4D myocardial segmentation in cine CMR datasets. European Heart Journal Cardiovascular Imaging, 2016, 17, 1118-1127.	1.2	14
26	Cardiac Chamber Volumetric Assessment Using 3D Ultrasound - A Review. Current Pharmaceutical Design, 2015, 22, 105-121.	1.9	13
27	Fast Tracking of the Left Ventricle Using Global Anatomical Affine Optical Flow and Local Recursive Block Matching. , 2014, , .		13
28	Three-Dimensional Cardiac Motion Estimation Based on Non-rigid Image Registration Using a Novel Transformation Model Adapted to the Heart. Lecture Notes in Computer Science, 2013, , 142-150.	1.3	12
29	Left-Atrial Segmentation From 3-D Ultrasound Using B-Spline Explicit Active Surfaces With Scale Uncoupling. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2016, 63, 212-221.	3.0	12
30	Cardiac Motion and Deformation Estimation from Tagged MRI Sequences Using a Temporal Coherent Image Registration Framework. Lecture Notes in Computer Science, 2013, , 316-324.	1.3	11
31	Standardized Delineation of Endocardial Boundaries in Three-Dimensional Left VentricularÂEchocardiograms. Journal of the American Society of Echocardiography, 2017, 30, 1059-1069.	2.8	10
32	Fast Left Ventricle Tracking in 3D Echocardiographic Data Using Anatomical Affine Optical Flow. Lecture Notes in Computer Science, 2013, , 191-199.	1.3	9
33	Segmentation of small bowel tumor tissue in capsule endoscopy images by using the MAP algorithm. , 2012, 2012, 4010-3.		8
34	Small bowel tumors detection in capsule endoscopy by Gaussian modeling of Color Curvelet Covariance coefficients., 2010, 2010, 5557-60.		7
35	Challenge on Endocardial Three-dimensional Ultrasound Segmentation (CETUS). , 2014, , .		7
36	Three-dimensional cardiac motion and strain estimation: A validation study in thick-walled univentricular phantoms. , 2010, , .		6

#	Article	IF	CITATIONS
37	Dense motion field estimation from myocardial boundary displacements. International Journal for Numerical Methods in Biomedical Engineering, 2016, 32, e02758.	2.1	6
38	In-vivo validation of a new clinical tool to quantify three-dimensional myocardial strain using ultrasound. International Journal of Cardiovascular Imaging, 2016, 32, 1707-1714.	1.5	6
39	Fast and fully automatic 3D echocardiographic segmentation using B-spline explicit active surfaces. , 2012, , .		5
40	Fast Fully Automatic Segmentation of the Myocardium in 2D Cine MR Images. Lecture Notes in Computer Science, 2013, , 71-79.	1.3	5
41	Influence of the Grid Topology of Free-Form Deformation Models on the Performance of 3D Strain Estimation in Echocardiography. Lecture Notes in Computer Science, 2013, , 308-315.	1.3	5
42	Clinical Expert Delineation of 3D Left Ventricular Echocardiograms for the CETUS Segmentation Challenge. , 2014, , .		5
43	A GPU level-set segmentation framework for 3D Echocardiography. , 2012, , .		4
44	B-spline explicit active tracking of surfaces (BEATS): Application to real-time 3D segmentation and tracking of the left ventricle in 3D echocardiography., 2012,,.		4
45	Motion and deformation estimation of cardiac ultrasound sequences using an anatomical B-spline transformation model. , 2012, , .		4
46	A comparison between methods for automatic quantification of global left ventricular function. , 2009, , .		3
47	An in-vivo study on the difference between principal and cardiac strains. , 2009, , .		3
48	Coupled B-spline active geometric functions for myocardial segmentation: A localized region-based approach. , 2010, , .		3
49	Multiview myocardial tracking in echocardiographic 2D sequences using shape and motion constrained level-set., 2013,,.		3
50	Fast left ventricle tracking in CMR images using localized anatomical affine optical flow., 2015,,.		3
51	3D motion and strain estimation of the heart: initial clinical findings. Proceedings of SPIE, 2010, , .	0.8	2
52	Fast 3D echocardiographic segmentation using B-Spline Explicit Active Surfaces: A validation study in a clinical setting. , $2011, \dots$		2
53	Tendon strain imaging using non-rigid image registration: a validation study. , 2012, , .		2
54	Hybrid energy approach for real-time b-spline explicit active tracking of surfaces (heartBEATS)., 2013,,.		2

#	Article	IF	CITATIONS
55	Semi-automatic 3D segmentation of costal cartilage in CT data from Pectus Excavatum patients. , 2015, , .		2
56	Robust temporal alignment of multimodal cardiac sequences. , 2015, , .		2
57	heartBEATS: A hybrid energy approach for real-time B-spline explicit active tracking of surfaces. Computerized Medical Imaging and Graphics, 2017, 62, 26-33.	5.8	2
58	Wireless capsule endoscopic frame classification scheme based on higher order statistics of multi-scale texture descriptors. IFMBE Proceedings, 2009, , 200-203.	0.3	2
59	Multiview myocardial segmentation in echocardiographic images using a piecewise parametric shape prior. , $2011, , .$		1
60	Three-dimensional myocardial strain estimation from volumetric ultrasound data using a novel transformation model adapted to the heart. , 2012 , , .		1
61	An automated pipeline for regional cardiac strain estimation from volumetric ultrasound data. , 2013,		1
62	Improving the robustness of interventional 4D ultrasound segmentation through the use of personalized prior shape models. Proceedings of SPIE, 2015, , .	0.8	1
63	Assessment of regional myocardial function using 3D cardiac strain estimation: comparison against conventional echocardiographic assessment., 2009,,.		0
64	Real-time region-based segmentation of 3D inhomogeneous objects in medical images. , $2011, , .$		0
65	Towards real-time 3D region-based segmentation: B-spline explicit active surfaces. , $2011, , .$		0
66	An integrated solution for semi-automatic segmentation of volumetric ultrasound data based on B-spline explicit active surfaces. , 2012, , .		0
67	Towards online real-time strain estimation in volumetric us data: Feasibility study and initial clinical validation. , 2013, , .		0
68	A level-set approach for tracking objects in image sequences using a level conservation constraint: Application to cardiac sequences. , 2014 , , .		0
69	Semi-automatic left-atrial segmentation from volumetric ultrasound using B-spline explicit active surfaces. , $2014, , .$		0
70	Automatic left ventricular segmentation in 4D interventional ultrasound data using a patient-specific temporal synchronized shape prior., 2019,,.		0