
MichaÅ, Niemczak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4485510/publications.pdf Version: 2024-02-01

MICHAÅ NIEMCZAK

#	Article	IF	CITATIONS
1	Ionic liquids as herbicides and plant growth regulators. Tetrahedron, 2013, 69, 4665-4669.	1.0	64
2	Two Herbicides in a Single Compound: Double Salt Herbicidal Ionic Liquids Exemplified with Glyphosate, Dicamba, and MCPA. ACS Sustainable Chemistry and Engineering, 2017, 5, 6261-6273.	3.2	62
3	Glyphosate-Based Herbicidal Ionic Liquids with Increased Efficacy. ACS Sustainable Chemistry and Engineering, 2014, 2, 2845-2851.	3.2	57
4	Metsulfuron-Methyl-Based Herbicidal Ionic Liquids. Journal of Agricultural and Food Chemistry, 2015, 63, 3357-3366.	2.4	57
5	Betaine and Carnitine Derivatives as Herbicidal Ionic Liquids. Chemistry - A European Journal, 2016, 22, 12012-12021.	1.7	57
6	Synthesis, properties and evaluation of biological activity of herbicidal ionic liquids with 4-(4-chloro-2-methylphenoxy)butanoate anion. RSC Advances, 2016, 6, 7330-7338.	1.7	53
7	Herbicidal ionic liquid with dual-function. Tetrahedron, 2013, 69, 8132-8136.	1.0	50
8	Herbicidal ionic liquids based on esterquats. New Journal of Chemistry, 2015, 39, 5715-5724.	1.4	50
9	Herbicidal Ionic Liquids: A Promising Future for Old Herbicides? Review on Synthesis, Toxicity, Biodegradation, and Efficacy Studies. Journal of Agricultural and Food Chemistry, 2020, 68, 10456-10488.	2.4	44
10	Biodegradable herbicidal ionic liquids based on synthetic auxins and analogues of betaine. New Journal of Chemistry, 2017, 41, 8066-8077.	1.4	42
11	Bioherbicidal Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2018, 6, 2741-2750.	3.2	42
12	Bis(ammonium) ionic liquids with herbicidal anions. RSC Advances, 2015, 5, 15487-15493.	1.7	39
13	Influence of the alkyl chain length on the physicochemical properties and biological activity in a homologous series of dichlorprop-based herbicidal ionic liquids. Journal of Molecular Liquids, 2019, 276, 431-440.	2.3	36
14	lonic Liquids Derived from Vitamin C as Multifunctional Active Ingredients for Sustainable Stored-Product Management. ACS Sustainable Chemistry and Engineering, 2019, 7, 1072-1084.	3.2	35
15	Efficacy of herbicidal ionic liquids and choline salt based on 2,4-D. Crop Protection, 2017, 98, 85-93.	1.0	32
16	Alkyl(C ₁₆ , C ₁₈ , C ₂₂)trimethylammonium-Based Herbicidal Ionic Liquids. Journal of Agricultural and Food Chemistry, 2017, 65, 260-269.	2.4	32
17	Preparation and characterization of new ionic liquid forms of 2,4-DP herbicide. Tetrahedron, 2017, 73, 7315-7325.	1.0	30
18	Transformation of Indole-3-butyric Acid into Ionic Liquids as a Sustainable Strategy Leading to Highly Efficient Plant Growth Stimulators. ACS Sustainable Chemistry and Engineering, 2020, 8, 1591-1598.	3.2	29

ΜιςμαÅ, Νιεμςζακ

#	Article	IF	CITATIONS
19	Synthesis and Structure–Property Relationships in Herbicidal Ionic Liquids and their Double Salts. ChemPlusChem, 2018, 83, 529-541.	1.3	28
20	Ionic liquids based stored product insect antifeedants. RSC Advances, 2013, 3, 25019.	1.7	27
21	Dicamba-Based Herbicides: Herbicidal Ionic Liquids versus Commercial Forms. Journal of Agricultural and Food Chemistry, 2020, 68, 4588-4594.	2.4	26
22	Diallyldimethylammonium and trimethylvinylammonium ionic liquids—Synthesis and application to catalysis. Applied Catalysis A: General, 2013, 451, 168-175.	2.2	22
23	Removal of herbicidal ionic liquids by electrochemical advanced oxidation processes combined with biological treatment. Environmental Technology (United Kingdom), 2017, 38, 1093-1099.	1.2	22
24	lodosulfuron-Methyl-Based Herbicidal Ionic Liquids Comprising Alkyl Betainate Cation as Novel Active Ingredients with Reduced Environmental Impact and Excellent Efficacy. Journal of Agricultural and Food Chemistry, 2020, 68, 13661-13671.	2.4	18
25	Quantifying the Mineralization of ¹³ C-Labeled Cations and Anions Reveals Differences in Microbial Biodegradation of Herbicidal Ionic Liquids between Water and Soil. ACS Sustainable Chemistry and Engineering, 2020, 8, 3412-3426.	3.2	11
26	"Sweet―ionic liquids comprising the acesulfame anion – synthesis, physicochemical properties and antifeedant activity towards stored product insects. New Journal of Chemistry, 2020, 44, 7017-7028.	1.4	11
27	Transformation of Iodosulfuron-Methyl into Ionic Liquids Enables Elimination of Additional Surfactants in Commercial Formulations of Sulfonylureas. Molecules, 2021, 26, 4396.	1.7	11
28	Toward revealing the role of the cation in the phytotoxicity of the betaine-based esterquats comprising dicamba herbicide. Science of the Total Environment, 2022, 845, 157181.	3.9	9
29	Voltammetric sensor based on long alkyl chain tetraalkylammonium ionic liquids comprising ascorbate anion for determination of nitrite. Mikrochimica Acta, 2021, 188, 54.	2.5	8
30	Dicationic Herbicidal Ionic Liquids Comprising Two Active Ingredients Exhibiting Different Modes of Action. Journal of Agricultural and Food Chemistry, 2022, 70, 2545-2553.	2.4	6
31	Ionic liquid-assisted synthesis of chitin–ethylene glycol hydrogels as electrolyte membranes for sustainable electrochemical capacitors. Scientific Reports, 2022, 12, .	1.6	6
32	Sustainable Design of New Ionic Forms of Vitamin B ₃ and Their Utilization as Plant Protection Agents. Journal of Agricultural and Food Chemistry, 2022, 70, 8222-8232.	2.4	6
33	"Bitter―Results: Toward Sustainable Synthesis of the Most Bitter Substances, Denatonium Saccharinate and Denatonium Benzoate, Starting from a Popular Anesthetic, Lidocaine. Journal of Chemical Education, 0, , .	1.1	5
34	Ionic liquids based on 2-chloroethyltrimethylammonium chloride (CCC) as plant growth regulators. Open Chemistry, 2013, 11, 1816-1821.	1.0	4
35	Preparation of 1-methyl-3-phenylisoquinoline derivatives from oximes using polyphosphoric esters. New Journal of Chemistry, 2015, 39, 1868-1873.	1.4	4
36	Pharmacokinetic Profile of 1-Methylnicotinamide Nitrate in Rats. Journal of Pharmaceutical Sciences, 2017, 106, 1412-1418.	1.6	3

#	Article	IF	CITATIONS
37	Synthesis and efficacy of herbicidal ionic liquids with chlorsulfuron as the anion. Open Chemistry, 2020, 18, 1282-1293.	1.0	2
38	Frontispiece: Betaine and Carnitine Derivatives as Herbicidal Ionic Liquids. Chemistry - A European Journal, 2016, 22, .	1.7	0