Darragh Murnane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4485474/publications.pdf

Version: 2024-02-01

687363 677142 38 520 13 22 h-index g-index citations papers 40 40 40 626 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Direct Ionization of Solid-Phase Microextraction Fibers for Quantitative Drug Bioanalysis: From Peripheral Circulation to Mass Spectrometry Detection. Analytical Chemistry, 2015, 87, 754-759.	6.5	52
2	Rapid characterisation of the inherent dispersibility of respirable powders using dry dispersion laser diffraction. International Journal of Pharmaceutics, 2013, 447, 124-131.	5.2	49
3	Formulation Pre-screening of Inhalation Powders Using Computational Atom–Atom Systematic Search Method. Molecular Pharmaceutics, 2015, 12, 18-33.	4.6	43
4	Dynamics of aerosol size during inhalation: Hygroscopic growth of commercial nebulizer formulations. International Journal of Pharmaceutics, 2014, 463, 50-61.	5.2	41
5	Nitrogen-14 Nuclear Quadrupole Resonance Spectroscopy: A Promising Analytical Methodology for Medicines Authentication and Counterfeit Antimalarial Analysis. Analytical Chemistry, 2013, 85, 2746-2753.	6.5	34
6	Pulmonary aerosol delivery and the importance of growth dynamics. Therapeutic Delivery, 2017, 8, 1051-1061.	2.2	32
7	Developing an environmentally benign process for the production of microparticles: Amphiphilic crystallization. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 72-82.	4.3	21
8	Dry Powder Formulations for Inhalation of Fluticasone Propionate and Salmeterol Xinafoate Microcrystals. Journal of Pharmaceutical Sciences, 2009, 98, 503-515.	3.3	20
9	Predicting the Fine Particle Fraction of Dry Powder Inhalers Using Artificial Neural Networks. Journal of Pharmaceutical Sciences, 2017, 106, 313-321.	3.3	20
10	Crystallization and Crystallinity of Fluticasone Propionate. Crystal Growth and Design, 2008, 8, 2753-2764.	3.0	19
11	Comparison of salmeterol xinafoate microparticle production by conventional and novel antisolvent crystallization. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 94-105.	4.3	17
12	Optimizing the Entrainment Geometry of a Dry Powder Inhaler: Methodology and Preliminary Results. Pharmaceutical Research, 2016, 33, 2668-2679.	3.5	17
13	Wurster Fluidised Bed Coating of Microparticles: Towards Scalable Production of Oral Sustained-Release Liquid Medicines for Patients with Swallowing Difficulties. AAPS PharmSciTech, 2020, 21, 3.	3.3	17
14	Computational modelling and experimental validation of drug entrainment in a dry powder inhaler. International Journal of Pharmaceutics, 2018, 553, 37-46.	5.2	13
15	Investigations into the Formulation of Metered Dose Inhalers of Salmeterol Xinafoate and Fluticasone Propionate Microcrystals. Pharmaceutical Research, 2008, 25, 2283-2291.	3.5	12
16	Polymorphic control of inhalation microparticles prepared by crystallization. International Journal of Pharmaceutics, 2008, 361, 141-149.	5.2	12
17	Potential of a Cyclone Prototype Spacer to Improve In Vitro Dry Powder Delivery. Pharmaceutical Research, 2014, 31, 1133-1145.	3.5	11
18	Comparison of Oral, Intranasal and Aerosol Administration of Amiodarone in Rats as a Model of Pulmonary Phospholipidosis. Pharmaceutics, 2019, 11, 345.	4.5	11

#	Article	IF	Citations
19	Evidence for the existence of powder sub-populations in micronized materials: Aerodynamic size-fractions of aerosolized powders possess distinct physicochemical properties Pharmaceutical Research, 2014, 31, 3251-3264.	3.5	9
20	A personalized medicine approach to the design of dry powder inhalers: Selecting the optimal amount of bypass. International Journal of Pharmaceutics, 2017, 529, 589-596.	5.2	9
21	Crystallographic tomography and molecular modelling of structured organic polycrystalline powders. CrystEngComm, 2021, 23, 2520-2531.	2.6	8
22	Interaction of Formulation and Device Factors Determine the In Vitro Performance of Salbutamol Sulphate Dry Powders for Inhalation. Journal of Pharmaceutical Sciences, 2015, 104, 3861-3869.	3.3	7
23	In situ and Ex situ Analysis of Salmeterol Xinafoate Microcrystal Formation from Poly(ethylene) Tj ETQq1 1 0.784	314.rgBT	/Oyerlock 10
24	A digital workflow from crystallographic structure to single crystal particle attributes for predicting the formulation properties of terbutaline sulfate. CrystEngComm, 2020, 22, 3347-3360.	2.6	6
25	Water Uptake by Evaporating pMDI Aerosol Prior to Inhalation Affects Both Regional and Total Deposition in the Respiratory System. Pharmaceutics, 2021, 13, 941.	4.5	6
26	Establishing the importance of oil-membrane interactions on the transmembrane diffusion of physicochemically diverse compounds. International Journal of Pharmaceutics, 2016, 506, 429-437.	5.2	4
27	Investigating the Suitability of High Content Image Analysis as a Tool to Assess the Reversibility of Foamy Alveolar Macrophage Phenotypes In Vitro. Pharmaceutics, 2020, 12, 262.	4.5	4
28	The Influence of Oily Vehicle Composition and Vehicle-Membrane Interactions on the Diffusion of Model Permeants across Barrier Membranes. Membranes, 2021, 11, 57.	3.0	4
29	Mathematical approach for understanding deagglomeration behaviour of drug powder in formulations with coarse carrier. Asian Journal of Pharmaceutical Sciences, 2015, 10, 501-512.	9.1	3
30	Development of an adaptive bypass element for passive entrainment flow control in dry powder inhalers. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 5201-5213.	2.1	3
31	Air Flow Entrainment of Lactose Powder: Simulation and Experiment. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2019, , 107-117.	0.2	2
32	Multivariate Analytical Approaches to Identify Key Molecular Properties of Vehicles, Permeants and Membranes That Affect Permeation through Membranes. Pharmaceutics, 2020, 12, 958.	4.5	2
33	Solid-phase microextraction for assessment of plasma protein binding, a complement to rapid equilibrium dialysis. Bioanalysis, 2021, 13, 1101-1111.	1.5	2
34	High Content Image Analysis as a Tool to Morphologically Distinguish Macrophage Activation and Determine Its Importance for Foamy Alveolar Macrophage Responses. Frontiers in Immunology, 2021, 12, 611280.	4.8	2
35	Development of a New Dislodgeable Foliar Residue Analytical Laboratory Method for Pesticides. Annals of Work Exposures and Health, 2022, 66, 1070-1080.	1.4	1
36	The Challenges of Paediatric Pulmonary Drug Delivery. AAPS Advances in the Pharmaceutical Sciences Series, 2014, , 253-272.	0.6	0

#	Article	IF	CITATIONS
37	Buccal/Sublingual Drug Delivery for the Paediatric Population. AAPS Advances in the Pharmaceutical Sciences Series, 2014, , 205-215.	0.6	O
38	Dispersing the Mists: An Experimental History of Medicine Study into the Quality of Volatile Inhalations. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2017, 30, 157-163.	1.4	0