Anders M Svensson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4485409/publications.pdf

Version: 2024-02-01

117 papers 16,505 citations

52 h-index 22764 112 g-index

175 all docs

175 docs citations

175 times ranked

10413 citing authors

#	Article	IF	CITATIONS
1	Magnitude, frequency and climate forcing of global volcanism during the last glacial period as seen in Greenland and Antarctic ice cores (60–9 ka). Climate of the Past, 2022, 18, 485-506.	1.3	31
2	Melt in the Greenland EastGRIP ice core reveals Holocene warm events. Climate of the Past, 2022, 18, 1011-1034.	1.3	3
3	A multi-ice-core, annual-layer-counted Greenland ice-core chronology for the last 3800Âyears: GICC21. Climate of the Past, 2022, 18, 1125-1150.	1.3	8
4	Greenland Ice Core Record of Last Glacial Dust Sources and Atmospheric Circulation. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1,2	17
5	The anatomy of past abrupt warmings recorded in Greenland ice. Nature Communications, 2021, 12, 2106.	5.8	27
6	A 120,000-year long climate record from a NW-Greenland deep ice core at ultra-high resolution. Scientific Data, 2021, 8, 141.	2.4	28
7	Antarctic surface temperature and elevation during the Last Glacial Maximum. Science, 2021, 372, 1097-1101.	6.0	61
8	A portable lightweight in situ analysis (LISA) box for ice and snow analysis. Cryosphere, 2021, 15, 3719-3730.	1.5	2
9	Volcanic climate forcing preceding the inception of the Younger Dryas: Implications for tracing the Laacher See eruption. Quaternary Science Reviews, 2021, 274, 107260.	1.4	12
10	Testing and Improving the IntCal20 Calibration Curve with Independent Records. Radiocarbon, 2020, 62, 1079-1094.	0.8	18
11	Using paleo-archives to safeguard biodiversity under climate change. Science, 2020, 369, .	6.0	98
12	Bipolar volcanic synchronization of abrupt climate change in Greenland and Antarctic ice cores during the last glacial period. Climate of the Past, 2020, 16, 1565-1580.	1.3	44
13	A first chronology for the East Greenland Ice-core Project (EGRIP) over the Holocene and last glacial termination. Climate of the Past, 2020, 16, 2359-2380.	1.3	23
14	Abrupt Change in Climate and Biotic Systems. Current Biology, 2019, 29, R1045-R1054.	1.8	37
15	East Greenland ice core dust record reveals timing of Greenland ice sheet advance and retreat. Nature Communications, 2019, 10, 4494.	5. 8	45
16	A 2700-year annual timescale and accumulation history for an ice core from Roosevelt Island, West Antarctica. Climate of the Past, 2019, 15, 751-779.	1.3	55
17	Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene. Nature Communications, 2018, 9, 1476.	5.8	74
18	First identification of cryptotephra from the Kamchatka Peninsula in a Greenland ice core: Implications of a widespread marker deposit that links Greenland to the Pacific northwest. Quaternary Science Reviews, 2018, 181, 200-206.	1.4	32

#	Article	IF	CITATIONS
19	Particle shape accounts for instrumental discrepancy in ice core dust size distributions. Climate of the Past, 2018, 14, 601-608.	1.3	20
20	High-resolution isotopic evidence for a potential Saharan provenance of Greenland glacial dust. Scientific Reports, 2018, 8, 15582.	1.6	20
21	Connecting the Greenland ice-core and Uâ^•Th timescales via cosmogenic radionuclides: testing the synchroneity of Dansgaard–Oeschger events. Climate of the Past, 2018, 14, 1755-1781.	1.3	62
22	(MIS3 & Description of the contraction of the cont	1.4	59
23	An improved north–south synchronization of ice core records around the 41†kyr ¹⁰ Be peak. Climate of the Past, 2017, 13, 217-229.	1.3	52
24	Inverse stochastic–dynamic models for high-resolution Greenland ice core records. Earth System Dynamics, 2017, 8, 1171-1190.	2.7	20
25	Eurasian contribution to the last glacial dust cycle: how are loess sequences built?. Climate of the Past, 2017, 13, 1181-1197.	1.3	25
26	Calibrated cryo-cell UV-LA-ICPMS elemental concentrations from the NGRIP ice core reveal abrupt, sub-annual variability in dust across the GI-21.2 interstadial period. Cryosphere, 2017, 11, 1297-1309.	1.5	14
27	Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes. Scientific Reports, 2016, 6, 29837.	1.6	41
28	An Optical Dye Method for Continuous Determination of Acidity in Ice Cores. Environmental Science & Environmental & En	4.6	13
29	Comment on "Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover― Science, 2016, 351, 927-927.	6.0	1
30	Two possible source regions for central Greenland last glacial dust. Geophysical Research Letters, 2015, 42, 10,399.	1.5	39
31	Chemical compositions of solid particles present in the Greenland NEEM ice core over the last 110,000 years. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9789-9813.	1.2	13
32	Greenland ice cores constrain glacial atmospheric fluxes of phosphorus. Journal of Geophysical Research D: Atmospheres, 2015, 120, 10,810-10,822.	1.2	6
33	The role of seasonality of mineral dust concentration and size on glacial/interglacial dust changes in the EPICA Dronning Maud Land ice core. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9916-9931.	1.2	32
34	On the occurrence of annual layers in Dome Fuji ice core early Holocene ice. Climate of the Past, 2015, 11, 1127-1137.	1.3	7
35	Danube loess stratigraphy — Towards a pan-European loess stratigraphic model. Earth-Science Reviews, 2015, 148, 228-258.	4.0	241
36	A tephra lattice for Greenland and a reconstruction of volcanic events spanning 25–45 ka b2k. Quaternary Science Reviews, 2015, 118, 122-141.	1.4	75

#	Article	IF	CITATIONS
37	Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nature Communications, 2015, 6, 8611.	5.8	188
38	Ice Cores. Encyclopedia of Earth Sciences Series, 2015, , 341-348.	0.1	1
39	Fabric along the NEEM ice core, Greenland, and its comparison with GRIP and NGRIP ice cores. Cryosphere, 2014, 8, 1129-1138.	1.5	67
40	Initial results from geophysical surveys and shallow coring of the Northeast Greenland Ice Stream (NEGIS). Cryosphere, 2014, 8, 1275-1287.	1.5	56
41	A compilation of Western European terrestrial records 60–8ÂkaÂBP: towards an understanding of latitudinal climatic gradients. Quaternary Science Reviews, 2014, 106, 167-185.	1.4	121
42	Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104Åka reveal regional millennial-scale $\hat{l}'180$ gradients with possible Heinrich event imprint. Quaternary Science Reviews, 2014, 106, 29-46.	1.4	275
43	A North Atlantic tephrostratigraphical framework for 130–60ÂkaÂb2k: new tephra discoveries, marine-based correlations, and future challenges. Quaternary Science Reviews, 2014, 106, 101-121.	1.4	61
44	Dating, synthesis, and interpretation of palaeoclimatic records of the Last Glacial cycle and model-data integration: advances by the INTIMATE (INTegration of Ice-core, MArine and TErrestrial) Tj ETQq0 0 0	rg B.¼ /Ove	erlo z ak 10 Tf 50
45	Ice Cores. , 2014, , 1-12.		O
46	Challenges in 14C dating towards the limit of the method inferred from anchoring a floating tree ring radiocarbon chronology to ice core records around the Laschamp geomagnetic field minimum. Earth and Planetary Science Letters, 2014, 394, 209-215.	1.8	28
47	A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews, 2014, 106, 14-28.	1.4	1,436
48	Persistent link between solar activity and Greenland climate during the Last GlacialÂMaximum. Nature Geoscience, 2014, 7, 662-666.	5.4	80
49	Multi-speleothem record reveals tightly coupled climate between central Europe and Greenland during Marine Isotope Stage 3. Geology, 2014, 42, 1043-1046.	2.0	77
50	Climate variability and associated vegetation response throughout Central and Eastern Europe (CEE) between 60 and 8Âka. Quaternary Science Reviews, 2014, 106, 206-224.	1.4	188
51	A Chinese Imprint in Insoluble Pollutants Recently Deposited in Central Greenland As Indicated by Lead Isotopes. Environmental Science & Environmental	4.6	52
52	The importance of independent chronology in integrating records of past climate change for the 60–8Âka INTIMATE time interval. Quaternary Science Reviews, 2014, 106, 47-66.	1.4	64
53	Location of cation impurities in NGRIP deep ice revealed by cryo-cell UV-laser-ablation ICPMS. Journal of Glaciology, 2014, 60, 970-988.	1.1	21
54	Ice Core Archives of Mineral Dust. , 2014, , 463-485.		10

#	Article	IF	CITATIONS
55	State of the art of ice core annual layer dating. Past Global Change Magazine, 2014, 22, 26-27.	0.4	2
56	Continuous Flow Analysis Method for Determination of Dissolved Reactive Phosphorus in Ice Cores. Environmental Science & Envir	4.6	18
57	Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 2013, 493, 489-494.	13.7	565
58	The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Climate of the Past, 2013, 9, 1733-1748.	1.3	362
59	Revisiting the Faroe Marine Ash Zone <scp>III</scp> in two Greenland ice cores: implications for marineâ€ice correlations. Journal of Quaternary Science, 2013, 28, 641-646.	1.1	24
60	A technique for continuous detection of drill liquid in ice cores. Journal of Glaciology, 2013, 59, 503-506.	1.1	5
61	A first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core. Climate of the Past, 2013, 9, 2713-2730.	1.3	133
62	An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Climate of the Past, 2013, 9, 1715-1731.	1.3	324
63	ICE CORES Dynamics of the Greenland Ice Sheet. , 2013, , 439-447.		0
64	Direct linking of Greenland and Antarctic ice cores at the Toba eruption (74 ka BP). Climate of the Past, 2013, 9, 749-766.	1.3	70
65	A detailed framework of Marine Isotope Stages 4 and 5 volcanic events recorded in two Greenland ice-cores. Quaternary Science Reviews, 2012, 36, 59-77.	1.4	53
66	Synchronisation of palaeoenvironmental records over the last 60,000 years, andÂan extended INTIMATE event stratigraphy to 48,000Âb2k. Quaternary Science Reviews, 2012, 36, 2-10.	1.4	232
67	Reading the climate record of the martian polar layered deposits. Icarus, 2012, 221, 405-419.	1.1	65
68	The missing tephra horizons in the Greenland ice cores. Quaternary International, 2012, 279-280, 478.	0.7	3
69	An automated approach for annual layer counting in ice cores. Climate of the Past, 2012, 8, 1881-1895.	1.3	53
70	Duration of Greenland Stadial 22 and ice-gas \hat{l} age from counting of annual layers in Greenland NGRIP ice core. Climate of the Past, 2012, 8, 1839-1847.	1.3	20
71	Optimization of High-Resolution Continuous Flow Analysis for Transient Climate Signals in Ice Cores. Environmental Science & E	4.6	83
72	Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland. Journal of Geophysical Research, $2011,116,116$	3.3	126

#	Article	IF	Citations
73	The nature of MIS 3 stadial–interstadial transitions in Europe: New insights from model–data comparisons. Quaternary Science Reviews, 2011, 30, 3618-3637.	1.4	58
74	Annual layering in the NGRIP ice core during the Eemian. Climate of the Past, 2011, 7, 1427-1437.	1.3	23
75	Were last glacial climate events simultaneous between Greenland and France? A quantitative comparison using nonâ€tuned chronologies. Journal of Quaternary Science, 2010, 25, 387-394.	1.1	67
76	Tracing volcanic events in the NGRIP ice-core and synchronising North Atlantic marine records during the last glacial period. Earth and Planetary Science Letters, 2010, 294, 69-79.	1.8	87
77	Millennial-scale variability during the last glacial: The ice core record. Quaternary Science Reviews, 2010, 29, 2828-2838.	1.4	440
78	Consistent dating for Antarctic and Greenland ice cores. Quaternary Science Reviews, 2010, 29, 8-20.	1.4	259
79	Holocene thinning of the Greenland ice sheet. Nature, 2009, 461, 385-388.	13.7	403
80	Identification of the Fugloyarbanki tephra in the NGRIP ice core: a key tieâ€point for marine and iceâ€core sequences during the last glacial period. Journal of Quaternary Science, 2008, 23, 409-414.	1.1	59
81	Tree rings and ice cores reveal 14C calibration uncertainties during the YoungerÂDryas. Nature Geoscience, 2008, 1, 263-267.	5.4	185
82	Dynamic implications of discontinuous recrystallization in cold basal ice: Taylor Glacier, Antarctica. Journal of Geophysical Research, 2008, 113, .	3.3	21
83	Reply to comment by J. S. Denton and N. J. G. Pearce on "A synchronized dating of three Greenland ice cores throughout the Holocene― Journal of Geophysical Research, 2008, 113, .	3.3	11
84	Synchronizing ice cores from the Renland and Agassiz ice caps to the Greenland Ice Core Chronology. Journal of Geophysical Research, 2008, 113, .	3.3	68
85	Relation between neighbouring grains in the upper part of the NorthGRIP ice core — Implications for rotation recrystallization. Earth and Planetary Science Letters, 2008, 265, 666-671.	1.8	26
86	High-Resolution Greenland Ice Core Data Show Abrupt Climate Change Happens in Few Years. Science, 2008, 321, 680-684.	6.0	761
87	A 60 000 year Greenland stratigraphic ice core chronology. Climate of the Past, 2008, 4, 47-57.	1.3	910
88	The EDC3 chronology for the EPICA Dome C ice core. Climate of the Past, 2007, 3, 485-497.	1.3	396
89	A new continuous high-resolution detection system for sulphate in ice cores. Annals of Glaciology, 2007, 45, 178-182.	2.8	13
90	ICE CORES Dynamics of the Greenland Ice Sheet. , 2007, , 1288-1296.		0

#	Article	IF	CITATIONS
91	The DO-climate events are probably noise induced: statistical investigation of the claimed 1470 years cycle. Climate of the Past, 2007, 3, 129-134.	1.3	125
92	Change in ice rheology during climate variations $\hat{a} \in ``implications for ice flow modelling and dating of the EPICA Dome C core. Climate of the Past, 2007, 3, 155-167.$	1.3	68
93	A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research, 2006, 111, .	3.3	1,454
94	A synchronized dating of three Greenland ice cores throughout the Holocene. Journal of Geophysical Research, 2006, 111, .	3.3	499
95	The Greenland Ice Core Chronology 2005, 15–42ka. Part 1: constructing the time scale. Quaternary Science Reviews, 2006, 25, 3246-3257.	1.4	591
96	The Greenland Ice Core Chronology 2005, 15–42ka. Part 2: comparison to other records. Quaternary Science Reviews, 2006, 25, 3258-3267.	1.4	345
97	lce microstructure and fabric: an up-to-date approach for measuring textures. Journal of Glaciology, 2006, 52, 619-630.	1.1	43
98	Ice crystal properties of amber ice and strain enhancement at the base of cold Antarctic glaciers. Annals of Glaciology, 2005, 40, 185-190.	2.8	14
99	Visual stratigraphy of the North Greenland Ice Core Project (NorthGRIP) ice core during the last glacial period. Journal of Geophysical Research, 2005, 110, .	3.3	76
100	High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 2004, 431, 147-151.	13.7	2,489
101	Dynamics of crystal formation in the Greenland NorthGRIP ice core. Journal of Glaciology, 2004, 50, 325-328.	1.1	22
102	Properties of ice crystals in NorthGRIP late- to middle-Holocene ice. Annals of Glaciology, 2003, 37, 113-118.	2.8	17
103	Seasonal variability in ice crystal properties at NorthGRIP: a case study around 301 m depth. Annals of Glaciology, 2003, 37, 119-122.	2.8	7
104	The NorthGRIP deep drilling programme. Annals of Glaciology, 2002, 35, 1-4.	2.8	62
105	P-state-to-P-state transitions in optically prepared atomic collisions: III. A complete analysis of Li+ + Na(3p)\$ightarrow\$Li(2p) + Na+ differential scattering. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 2051-2068.	0.6	13
106	Properties of GRIP ice crystals from around Greenland interstadial 3. Annals of Glaciology, 2002, 35, 531-537.	2.8	4
107	Seasonal variability in the origin of recent atmospheric mineral dust at NorthGRIP, Greenland. Earth and Planetary Science Letters, 2002, 196, 123-134.	1.8	195
108	Eurasian Air Pollution Reaches Eastern North America. Science, 2000, 290, 2258-2259.	6.0	20

#	Article	IF	CITATIONS
109	Characterization of late glacial continental dust in the Greenland Ice Core Project ice core. Journal of Geophysical Research, 2000, 105, 4637-4656.	3.3	210
110	Spatial dependence of electron transfer from optically prepared states: Li++ Na(3p) rightarrow Li(2p) + Na+. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 5189-5204.	0.6	20
111	State propensities in electron transfer processes from optically prepared states:. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 3059-3075.	0.6	16
112	Left-right scattering asymmetries for electron transfer from oriented and tilted aligned Na(3p) states to H(n=2,3). Physical Review A, 1996, 54, 970-973.	1.0	9
113	Orbital alignment dependence of electron transfer cross sections. Zeitschrift F $\tilde{A}^{1}\!\!/\!\!4$ r Physik D-Atoms Molecules and Clusters, 1996, 37, 133-139.	1.0	10
114	Electron transfer in keV collisions: III. Experiments on initial orbital alignment dependence. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 1093-1100.	0.6	15
115	An experimental determination of the complete transition matrix for the electron transfer process. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 5459-5473.	0.6	20
116	Orbital alignment dependence of electron transfer cross sections. II. 1-15 keV He+-Na(3p) collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, L93-L99.	0.6	17
117	Millennial-Scale Climatic Events during the Last Glacial Episode. , 0, , 426-443.		O