
Anders M Svensson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4485409/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 2004, 431, 147-151.	13.7	2,489
2	A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research, 2006, 111, .	3.3	1,454
3	A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews, 2014, 106, 14-28.	1.4	1,436
4	A 60 000 year Greenland stratigraphic ice core chronology. Climate of the Past, 2008, 4, 47-57.	1.3	910
5	High-Resolution Greenland Ice Core Data Show Abrupt Climate Change Happens in Few Years. Science, 2008, 321, 680-684.	6.0	761
6	The Greenland Ice Core Chronology 2005, 15–42ka. Part 1: constructing the time scale. Quaternary Science Reviews, 2006, 25, 3246-3257.	1.4	591
7	Eemian interglacial reconstructed from a Greenland folded ice core. Nature, 2013, 493, 489-494.	13.7	565
8	A synchronized dating of three Greenland ice cores throughout the Holocene. Journal of Geophysical Research, 2006, 111, .	3.3	499
9	Millennial-scale variability during the last glacial: The ice core record. Quaternary Science Reviews, 2010, 29, 2828-2838.	1.4	440
10	Holocene thinning of the Greenland ice sheet. Nature, 2009, 461, 385-388.	13.7	403
11	The EDC3 chronology for the EPICA Dome C ice core. Climate of the Past, 2007, 3, 485-497.	1.3	396
12	The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Climate of the Past, 2013, 9, 1733-1748.	1.3	362
13	The Greenland Ice Core Chronology 2005, 15–42ka. Part 2: comparison to other records. Quaternary Science Reviews, 2006, 25, 3258-3267.	1.4	345
14	An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Climate of the Past, 2013, 9, 1715-1731.	1.3	324
15	Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104Âka reveal regional millennial-scale δ180 gradients with possible Heinrich event imprint. Quaternary Science Reviews, 2014, 106, 29-46.	1.4	275
16	Consistent dating for Antarctic and Greenland ice cores. Quaternary Science Reviews, 2010, 29, 8-20.	1.4	259
17	Danube loess stratigraphy — Towards a pan-European loess stratigraphic model. Earth-Science Reviews, 2015, 148, 228-258.	4.0	241
18	Synchronisation of palaeoenvironmental records over the last 60,000 years, andÂan extended INTIMATE event stratigraphy to 48,000Âb2k. Quaternary Science Reviews, 2012, 36, 2-10.	1.4	232

#	Article	IF	CITATIONS
19	Characterization of late glacial continental dust in the Greenland Ice Core Project ice core. Journal of Geophysical Research, 2000, 105, 4637-4656.	3.3	210
20	Seasonal variability in the origin of recent atmospheric mineral dust at NorthGRIP, Greenland. Earth and Planetary Science Letters, 2002, 196, 123-134.	1.8	195
21	Climate variability and associated vegetation response throughout Central and Eastern Europe (CEE) between 60 and 8Âka. Quaternary Science Reviews, 2014, 106, 206-224.	1.4	188
22	Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nature Communications, 2015, 6, 8611.	5.8	188
23	Tree rings and ice cores reveal 14C calibration uncertainties during the YoungerÂDryas. Nature Geoscience, 2008, 1, 263-267.	5.4	185
24	A first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core. Climate of the Past, 2013, 9, 2713-2730.	1.3	133
25	Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland. Journal of Geophysical Research, 2011, 116, .	3.3	126
26	The DO-climate events are probably noise induced: statistical investigation of the claimed 1470 years cycle. Climate of the Past, 2007, 3, 129-134.	1.3	125
27	A compilation of Western European terrestrial records 60–8ÂkaÂBP: towards an understanding of latitudinal climatic gradients. Quaternary Science Reviews, 2014, 106, 167-185.	1.4	121
28	Using paleo-archives to safeguard biodiversity under climate change. Science, 2020, 369, .	6.0	98
29	Tracing volcanic events in the NGRIP ice-core and synchronising North Atlantic marine records during the last glacial period. Earth and Planetary Science Letters, 2010, 294, 69-79.	1.8	87
30	Optimization of High-Resolution Continuous Flow Analysis for Transient Climate Signals in Ice Cores. Environmental Science & Technology, 2011, 45, 4483-4489.	4.6	83
31	Persistent link between solar activity and Greenland climate during the Last GlacialÂMaximum. Nature Geoscience, 2014, 7, 662-666.	5.4	80
32	Multi-speleothem record reveals tightly coupled climate between central Europe and Greenland during Marine Isotope Stage 3. Geology, 2014, 42, 1043-1046.	2.0	77
33	Visual stratigraphy of the North Greenland Ice Core Project (NorthGRIP) ice core during the last glacial period. Journal of Geophysical Research, 2005, 110, .	3.3	76
34	A tephra lattice for Greenland and a reconstruction of volcanic events spanning 25–45 ka b2k. Quaternary Science Reviews, 2015, 118, 122-141.	1.4	75
35	Greenland records of aerosol source and atmospheric lifetime changes from the Eemian to the Holocene. Nature Communications, 2018, 9, 1476.	5.8	74
36	Direct linking of Greenland and Antarctic ice cores at the Toba eruption (74 ka BP). Climate of the Past, 2013, 9, 749-766.	1.3	70

#	Article	IF	CITATIONS
37	Change in ice rheology during climate variations – implications for ice flow modelling and dating of the Past, 2007, 3, 155-167.	1.3	68
38	Synchronizing ice cores from the Renland and Agassiz ice caps to the Greenland Ice Core Chronology. Journal of Geophysical Research, 2008, 113, .	3.3	68
39	Were last glacial climate events simultaneous between Greenland and France? A quantitative comparison using nonâ€ŧuned chronologies. Journal of Quaternary Science, 2010, 25, 387-394.	1.1	67
40	Fabric along the NEEM ice core, Greenland, and its comparison with GRIP and NGRIP ice cores. Cryosphere, 2014, 8, 1129-1138.	1.5	67
41	Reading the climate record of the martian polar layered deposits. Icarus, 2012, 221, 405-419.	1.1	65
42	The importance of independent chronology in integrating records of past climate change for the 60–8Âka INTIMATE time interval. Quaternary Science Reviews, 2014, 106, 47-66.	1.4	64
43	The NorthGRIP deep drilling programme. Annals of Glaciology, 2002, 35, 1-4.	2.8	62
44	Connecting the Greenland ice-core and Uâ^•Th timescales via cosmogenic radionuclides: testing the synchroneity of Dansgaard–Oeschger events. Climate of the Past, 2018, 14, 1755-1781.	1.3	62
45	A North Atlantic tephrostratigraphical framework for 130–60ÂkaÂb2k: new tephra discoveries, marine-based correlations, and future challenges. Quaternary Science Reviews, 2014, 106, 101-121.	1.4	61
46	Antarctic surface temperature and elevation during the Last Glacial Maximum. Science, 2021, 372, 1097-1101.	6.0	61
47	Identification of the Fugloyarbanki tephra in the NGRIP ice core: a key tieâ€point for marine and iceâ€core sequences during the last glacial period. Journal of Quaternary Science, 2008, 23, 409-414.	1.1	59
48	(MIS3 & 2) millennial oscillations in Greenland dust and Eurasian aeolian records – A paleosol perspective. Quaternary Science Reviews, 2017, 169, 99-113.	1.4	59
49	The nature of MIS 3 stadial–interstadial transitions in Europe: New insights from model–data comparisons. Quaternary Science Reviews, 2011, 30, 3618-3637.	1.4	58
50	Initial results from geophysical surveys and shallow coring of the Northeast Greenland Ice Stream (NEGIS). Cryosphere, 2014, 8, 1275-1287.	1.5	56
51	A 2700-year annual timescale and accumulation history for an ice core from Roosevelt Island, West Antarctica. Climate of the Past, 2019, 15, 751-779.	1.3	55
52	A detailed framework of Marine Isotope Stages 4 and 5 volcanic events recorded in two Greenland ice-cores. Quaternary Science Reviews, 2012, 36, 59-77.	1.4	53
53	An automated approach for annual layer counting in ice cores. Climate of the Past, 2012, 8, 1881-1895.	1.3	53
54	A Chinese Imprint in Insoluble Pollutants Recently Deposited in Central Greenland As Indicated by Lead Isotopes. Environmental Science & Technology, 2014, 48, 1451-1457.	4.6	52

#	Article	IF	CITATIONS
55	An improved north–south synchronization of ice core records around the 41â€ [–] kyr ¹⁰ Be peak. Climate of the Past, 2017, 13, 217-229.	1.3	52
56	East Greenland ice core dust record reveals timing of Greenland ice sheet advance and retreat. Nature Communications, 2019, 10, 4494.	5.8	45
57	Bipolar volcanic synchronization of abrupt climate change in Greenland and Antarctic ice cores during the last glacial period. Climate of the Past, 2020, 16, 1565-1580.	1.3	44
58	lce microstructure and fabric: an up-to-date approach for measuring textures. Journal of Glaciology, 2006, 52, 619-630.	1.1	43
59	Underestimated risks of recurrent long-range ash dispersal from northern Pacific Arc volcanoes. Scientific Reports, 2016, 6, 29837.	1.6	41
60	Two possible source regions for central Greenland last glacial dust. Geophysical Research Letters, 2015, 42, 10,399.	1.5	39
61	Abrupt Change in Climate and Biotic Systems. Current Biology, 2019, 29, R1045-R1054.	1.8	37
62	The role of seasonality of mineral dust concentration and size on glacial/interglacial dust changes in the EPICA Dronning Maud Land ice core. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9916-9931.	1.2	32
63	First identification of cryptotephra from the Kamchatka Peninsula in a Greenland ice core: Implications of a widespread marker deposit that links Greenland to the Pacific northwest. Quaternary Science Reviews, 2018, 181, 200-206.	1.4	32
64	Magnitude, frequency and climate forcing of global volcanism during the last glacial period as seen in Greenland and Antarctic ice cores (60–9 ka). Climate of the Past, 2022, 18, 485-506.	1.3	31
65	Challenges in 14C dating towards the limit of the method inferred from anchoring a floating tree ring radiocarbon chronology to ice core records around the Laschamp geomagnetic field minimum. Earth and Planetary Science Letters, 2014, 394, 209-215.	1.8	28
66	A 120,000-year long climate record from a NW-Greenland deep ice core at ultra-high resolution. Scientific Data, 2021, 8, 141.	2.4	28
67	The anatomy of past abrupt warmings recorded in Greenland ice. Nature Communications, 2021, 12, 2106.	5.8	27
68	Relation between neighbouring grains in the upper part of the NorthGRIP ice core — Implications for rotation recrystallization. Earth and Planetary Science Letters, 2008, 265, 666-671.	1.8	26
69	Eurasian contribution to the last glacial dust cycle: how are loess sequences built?. Climate of the Past, 2017, 13, 1181-1197.	1.3	25
70	Revisiting the Faroe Marine Ash Zone <scp>III</scp> in two Greenland ice cores: implications for marineâ€ice correlations. Journal of Quaternary Science, 2013, 28, 641-646.	1.1	24
71	Dating, synthesis, and interpretation of palaeoclimatic records of the Last Glacial cycle and model-data integration: advances by the INTIMATE (INTegration of Ice-core, MArine and TErrestrial) Tj ETQq1	1 0.7844314	rgB ⊉ 4Overloc
72	Annual layering in the NGRIP ice core during the Eemian. Climate of the Past, 2011, 7, 1427-1437.	1.3	23

#	Article	IF	CITATIONS
73	A first chronology for the East Greenland Ice-core Project (EGRIP) over the Holocene and last glacial termination. Climate of the Past, 2020, 16, 2359-2380.	1.3	23
74	Dynamics of crystal formation in the Greenland NorthGRIP ice core. Journal of Glaciology, 2004, 50, 325-328.	1.1	22
75	Dynamic implications of discontinuous recrystallization in cold basal ice: Taylor Glacier, Antarctica. Journal of Geophysical Research, 2008, 113, .	3.3	21
76	Location of cation impurities in NGRIP deep ice revealed by cryo-cell UV-laser-ablation ICPMS. Journal of Glaciology, 2014, 60, 970-988.	1.1	21
77	An experimental determination of the complete transition matrix for the electron transfer process. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 5459-5473.	0.6	20
78	Spatial dependence of electron transfer from optically prepared states: Li++ Na(3p) rightarrow Li(2p) + Na+. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 5189-5204.	0.6	20
79	Eurasian Air Pollution Reaches Eastern North America. Science, 2000, 290, 2258-2259.	6.0	20
80	Duration of Greenland Stadial 22 and ice-gas Δage from counting of annual layers in Greenland NGRIP ice core. Climate of the Past, 2012, 8, 1839-1847.	1.3	20
81	Inverse stochastic–dynamic models for high-resolution Greenland ice core records. Earth System Dynamics, 2017, 8, 1171-1190.	2.7	20
82	Particle shape accounts for instrumental discrepancy in ice core dust size distributions. Climate of the Past, 2018, 14, 601-608.	1.3	20
83	High-resolution isotopic evidence for a potential Saharan provenance of Greenland glacial dust. Scientific Reports, 2018, 8, 15582.	1.6	20
84	Continuous Flow Analysis Method for Determination of Dissolved Reactive Phosphorus in Ice Cores. Environmental Science & Technology, 2013, 47, 12325-12332.	4.6	18
85	Testing and Improving the IntCal20 Calibration Curve with Independent Records. Radiocarbon, 2020, 62, 1079-1094.	0.8	18
86	Orbital alignment dependence of electron transfer cross sections. II. 1-15 keV He+-Na(3p) collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 1995, 28, L93-L99.	0.6	17
87	Properties of ice crystals in NorthGRIP late- to middle-Holocene ice. Annals of Glaciology, 2003, 37, 113-118.	2.8	17
88	Greenland Ice Core Record of Last Glacial Dust Sources and Atmospheric Circulation. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	17
89	State propensities in electron transfer processes from optically prepared states:. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 3059-3075.	0.6	16
90	Electron transfer in keV collisions: III. Experiments on initial orbital alignment dependence. Journal of Physics B: Atomic, Molecular and Optical Physics, 1996, 29, 1093-1100.	0.6	15

#	Article	IF	CITATIONS
91	Ice crystal properties of amber ice and strain enhancement at the base of cold Antarctic glaciers. Annals of Glaciology, 2005, 40, 185-190.	2.8	14
92	Calibrated cryo-cell UV-LA-ICPMS elemental concentrations from the NGRIP ice core reveal abrupt, sub-annual variability in dust across the GI-21.2 interstadial period. Cryosphere, 2017, 11, 1297-1309.	1.5	14
93	P-state-to-P-state transitions in optically prepared atomic collisions: III. A complete analysis of Li+ + Na(3p)\$ightarrow\$Li(2p) + Na+ differential scattering. Journal of Physics B: Atomic, Molecular and Optical Physics, 2002, 35, 2051-2068.	0.6	13
94	A new continuous high-resolution detection system for sulphate in ice cores. Annals of Glaciology, 2007, 45, 178-182.	2.8	13
95	Chemical compositions of solid particles present in the Greenland NEEM ice core over the last 110,000 years. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9789-9813.	1.2	13
96	An Optical Dye Method for Continuous Determination of Acidity in Ice Cores. Environmental Science & Technology, 2016, 50, 10485-10493.	4.6	13
97	Volcanic climate forcing preceding the inception of the Younger Dryas: Implications for tracing the Laacher See eruption. Quaternary Science Reviews, 2021, 274, 107260.	1.4	12
98	Reply to comment by J. S. Denton and N. J. G. Pearce on "A synchronized dating of three Greenland ice cores throughout the Holoceneâ€. Journal of Geophysical Research, 2008, 113, .	3.3	11
99	Orbital alignment dependence of electron transfer cross sections. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1996, 37, 133-139.	1.0	10
100	Ice Core Archives of Mineral Dust. , 2014, , 463-485.		10
101	Left-right scattering asymmetries for electron transfer from oriented and tilted aligned Na(3p) states to H(n=2,3). Physical Review A, 1996, 54, 970-973.	1.0	9
102	A multi-ice-core, annual-layer-counted Greenland ice-core chronology for the last 3800Âyears: GICC21. Climate of the Past, 2022, 18, 1125-1150.	1.3	8
103	Seasonal variability in ice crystal properties at NorthGRIP: a case study around 301 m depth. Annals of Glaciology, 2003, 37, 119-122.	2.8	7
104	On the occurrence of annual layers in Dome Fuji ice core early Holocene ice. Climate of the Past, 2015, 11, 1127-1137.	1.3	7
105	Greenland ice cores constrain glacial atmospheric fluxes of phosphorus. Journal of Geophysical Research D: Atmospheres, 2015, 120, 10,810-10,822.	1.2	6
106	A technique for continuous detection of drill liquid in ice cores. Journal of Glaciology, 2013, 59, 503-506.	1.1	5
107	Properties of GRIP ice crystals from around Greenland interstadial 3. Annals of Glaciology, 2002, 35, 531-537.	2.8	4
108	The missing tephra horizons in the Greenland ice cores. Quaternary International, 2012, 279-280, 478.	0.7	3

7

#	Article	IF	CITATIONS
109	Melt in the Greenland EastGRIP ice core reveals Holocene warm events. Climate of the Past, 2022, 18, 1011-1034.	1.3	3
110	A portable lightweight in situ analysis (LISA) box for ice and snow analysis. Cryosphere, 2021, 15, 3719-3730.	1.5	2
111	State of the art of ice core annual layer dating. Past Global Change Magazine, 2014, 22, 26-27.	0.4	2
112	Comment on "Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover― Science, 2016, 351, 927-927.	6.0	1
113	Ice Cores. Encyclopedia of Earth Sciences Series, 2015, , 341-348.	0.1	1
114	ICE CORES Dynamics of the Greenland Ice Sheet. , 2007, , 1288-1296.		0
115	ICE CORES Dynamics of the Greenland Ice Sheet. , 2013, , 439-447.		0
116	Ice Cores. , 2014, , 1-12.		0
117	Millennial-Scale Climatic Events during the Last Glacial Episode. , 0, , 426-443.		Ο