Af Maarten Altelaar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/44854/publications.pdf

Version: 2024-02-01

123 papers 7,437 citations

57758 44 h-index 79 g-index

137 all docs

137 docs citations

137 times ranked

10963 citing authors

#	Article	IF	CITATIONS
1	Next-generation proteomics: towards an integrative view of proteome dynamics. Nature Reviews Genetics, 2013, 14, 35-48.	16.3	656
2	Improved Peptide Identification by Targeted Fragmentation Using CID, HCD and ETD on an LTQ-Orbitrap Velos. Journal of Proteome Research, 2011, 10, 2377-2388.	3.7	277
3	Gold-Enhanced Biomolecular Surface Imaging of Cells and Tissue by SIMS and MALDI Mass Spectrometry. Analytical Chemistry, 2006, 78, 734-742.	6.5	273
4	Toward Full Peptide Sequence Coverage by Dual Fragmentation Combining Electron-Transfer and Higher-Energy Collision Dissociation Tandem Mass Spectrometry. Analytical Chemistry, 2012, 84, 9668-9673.	6.5	246
5	Microtubule Minus-End Stabilization by Polymerization-Driven CAMSAP Deposition. Developmental Cell, 2014, 28, 295-309.	7. 0	235
6	Vasohibins encode tubulin detyrosinating activity. Science, 2017, 358, 1453-1456.	12.6	185
7	Direct Molecular Imaging ofLymnaea stagnalisNervous Tissue at Subcellular Spatial Resolution by Mass Spectrometry. Analytical Chemistry, 2005, 77, 735-741.	6.5	182
8	Subcellular imaging mass spectrometry of brain tissue. Journal of Mass Spectrometry, 2005, 40, 160-168.	1.6	173
9	TRIM46 Controls Neuronal Polarity and Axon Specification by Driving the Formation of Parallel Microtubule Arrays. Neuron, 2015, 88, 1208-1226.	8.1	170
10	Protein acetylation affects acetate metabolism, motility and acid stress response in <i>Escherichia coli</i> . Molecular Systems Biology, 2014, 10, 762.	7.2	159
11	Coordination of peptidoglycan synthesis and outer membrane constriction during Escherichia coli cell division. ELife, 2015, 4, .	6.0	154
12	Talin-KANK1 interaction controls the recruitment of cortical microtubule stabilizing complexes to focal adhesions. ELife, $2016, 5, .$	6.0	150
13	Unambiguous Phosphosite Localization using Electron-Transfer/Higher-Energy Collision Dissociation (EThcD). Journal of Proteome Research, 2013, 12, 1520-1525.	3.7	145
14	Imaging of peptides in the rat brain using MALDI-FTICR mass spectrometry. Journal of the American Society for Mass Spectrometry, 2007, 18, 145-151.	2.8	144
15	Trends in ultrasensitive proteomics. Current Opinion in Chemical Biology, 2012, 16, 206-213.	6.1	134
16	Comprehensive Proteomic Analysis of Human Milk-derived Extracellular Vesicles Unveils a Novel Functional Proteome Distinct from Other Milk Components. Molecular and Cellular Proteomics, 2016, 15, 3412-3423.	3.8	129
17	Robust, Sensitive, and Automated Phosphopeptide Enrichment Optimized for Low Sample Amounts Applied to Primary Hippocampal Neurons. Journal of Proteome Research, 2017, 16, 728-737.	3.7	117
18	<i>De novo</i> discovery of phenotypic intratumour heterogeneity using imaging mass spectrometry. Journal of Pathology, 2015, 235, 3-13.	4.5	116

#	Article	IF	CITATIONS
19	Molecular Pathway of Microtubule Organization at the Golgi Apparatus. Developmental Cell, 2016, 39, 44-60.	7.0	114
20	MAP7 family proteins regulate kinesin-1 recruitment and activation. Journal of Cell Biology, 2019, 218, 1298-1318.	5.2	114
21	Benchmarking stable isotope labeling based quantitative proteomics. Journal of Proteomics, 2013, 88, 14-26.	2.4	112
22	Imaging mass spectrometry at cellular length scales. Nature Protocols, 2007, 2, 1185-1196.	12.0	108
23	High-resolution MALDI imaging mass spectrometry allows localization of peptide distributions at cellular length scales in pituitary tissue sections. International Journal of Mass Spectrometry, 2007, 260, 203-211.	1.5	107
24	Why don't biologists use SIMS?. Applied Surface Science, 2006, 252, 6827-6835.	6.1	104
25	Benchmarking Multiple Fragmentation Methods on an Orbitrap Fusion for Top-down Phospho-Proteoform Characterization. Analytical Chemistry, 2015, 87, 4152-4158.	6.5	99
26	Improving SRM Assay Development: A Global Comparison between Triple Quadrupole, Ion Trap, and Higher Energy CID Peptide Fragmentation Spectra. Journal of Proteome Research, 2011, 10, 4334-4341.	3.7	90
27	Single-step Enrichment by Ti4+-IMAC and Label-free Quantitation Enables In-depth Monitoring of Phosphorylation Dynamics with High Reproducibility and Temporal Resolution. Molecular and Cellular Proteomics, 2014, 13, 2426-2434.	3.8	89
28	Daily Rhythms in the Cyanobacterium Synechococcus elongatus Probed by High-resolution Mass Spectrometry–based Proteomics Reveals a Small Defined Set of Cyclic Proteins. Molecular and Cellular Proteomics, 2014, 13, 2042-2055.	3.8	83
29	Anti-tumour immunity induces aberrant peptide presentation in melanoma. Nature, 2021, 590, 332-337.	27.8	81
30	Similar is not the same: Differences in the function of the (hemi-)cellulolytic regulator XlnR (Xlr1/Xyr1) in filamentous fungi. Fungal Genetics and Biology, 2014, 72, 73-81.	2.1	80
31	Quantitative Map of Proteome Dynamics during Neuronal Differentiation. Cell Reports, 2017, 18, 1527-1542.	6.4	79
32	The HAUS Complex Is a Key Regulator of Non-centrosomal Microtubule Organization during Neuronal Development. Cell Reports, 2018, 24, 791-800.	6.4	75
33	A central role for TFIID in the pluripotent transcription circuitry. Nature, 2013, 495, 516-519.	27.8	73
34	Strong Cation Exchange-based Fractionation of Lys-N-generated Peptides Facilitates the Targeted Analysis of Post-translational Modifications. Molecular and Cellular Proteomics, 2009, 8, 190-200.	3.8	69
35	Feedback-Driven Mechanisms between Microtubules and the Endoplasmic Reticulum Instruct Neuronal Polarity. Neuron, 2019, 102, 184-201.e8.	8.1	68
36	Cooperative action of NC2 and Mot1p to regulate TATA-binding protein function across the genome. Genes and Development, 2008, 22, 2359-2369.	5.9	66

#	Article	IF	CITATIONS
37	$\langle i \rangle N \langle i \rangle$ -lactoyl-amino acids are ubiquitous metabolites that originate from CNDP2-mediated reverse proteolysis of lactate and amino acids. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6601-6606.	7.1	63
38	BRAF V600E Kinase Domain Duplication Identified in Therapy-Refractory Melanoma Patient-Derived Xenografts. Cell Reports, 2016, 16, 263-277.	6.4	61
39	Progressive methylation of ageing histones by Dot1 functions as a timer. EMBO Reports, 2011, 12, 956-962.	4.5	56
40	PhosphoPath: Visualization of Phosphosite-centric Dynamics in Temporal Molecular Networks. Journal of Proteome Research, 2015, 14, 4332-4341.	3.7	56
41	Feedback-Driven Assembly of the Axon Initial Segment. Neuron, 2019, 104, 305-321.e8.	8.1	54
42	Assessment of SRM, MRM ³ , and DIA for the targeted analysis of phosphorylation dynamics in nonâ€small cell lung cancer. Proteomics, 2016, 16, 2193-2205.	2.2	53
43	VAPâ€SCRN1 interaction regulates dynamic endoplasmic reticulum remodeling and presynaptic function. EMBO Journal, 2019, 38, e101345.	7.8	53
44	Tumour kinome re-wiring governs resistance to palbociclib in oestrogen receptor positive breast cancers, highlighting new therapeutic modalities. Oncogene, 2020, 39, 4781-4797.	5.9	52
45	Deep proteome profiling of Trichoplax adhaerens reveals remarkable features at the origin of metazoan multicellularity. Nature Communications, 2013, 4, 1408.	12.8	50
46	Deletion of <i>flbA</i> Results in Increased Secretome Complexity and Reduced Secretion Heterogeneity in Colonies of <i>Aspergillus niger</i> Journal of Proteome Research, 2013, 12, 1808-1819.	3.7	49
47	Uncovering the abilities of <scp><i>A</i></scp> <i>garicus bisporus</i> to degrade plant biomass throughout its life cycle. Environmental Microbiology, 2015, 17, 3098-3109.	3.8	49
48	Mast Cell Degranulation Is Accompanied by the Release of a Selective Subset of Extracellular Vesicles That Contain Mast Cell–Specific Proteases. Journal of Immunology, 2016, 197, 3382-3392.	0.8	49
49	$\langle \text{scp} \rangle \text{ROCK} \langle \text{scp} \rangle 1$ is a potential combinatorial drug target for $\langle \text{scp} \rangle \text{BRAF} \langle \text{scp} \rangle$ mutant melanoma. Molecular Systems Biology, 2014, 10, 772.	7.2	48
50	Determination of polycyclic aromatic hydrocarbons and polycylic aromatic sulfur heterocycles by high-performance liquid chromatography with fluorescence and atmospheric pressure chemical ionization mass spectrometry detection in seawater and sediment samples. Journal of Chromatography A, 2002, 958, 141-148.	3.7	47
51	In vivo phosphoproteomics reveals kinase activity profiles that predict treatment outcome in triple-negative breast cancer. Nature Communications, 2018, 9, 3501.	12.8	45
52	Probing the Proteome Response to Toluene Exposure in the Solvent Tolerant <i>Pseudomonas putida</i> S12. Journal of Proteome Research, 2011, 10, 394-403.	3.7	44
53	Straightforward and de Novo Peptide Sequencing by MALDI-MS/MS Using a Lys-N Metalloendopeptidase. Molecular and Cellular Proteomics, 2009, 8, 650-660.	3.8	42
54	Comparative Assessment of Site Assignments in CID and Electron Transfer Dissociation Spectra of Phosphopeptides Discloses Limited Relocation of Phosphate Groups. Molecular and Cellular Proteomics, 2010, 9, 2140-2148.	3.8	42

#	Article	IF	CITATIONS
55	Myc coordinates transcription and translation to enhance transformation and suppress invasiveness. EMBO Reports, 2015, 16, 1723-1736.	4.5	42
56	Nedd4-Binding Protein 1 and TNFAIP3-Interacting Protein 1 Control MHC-1 Display in Neuroblastoma. Cancer Research, 2018, 78, 6621-6631.	0.9	42
57	Spatially Resolving the Secretome within the Mycelium of the Cell Factory <i>Aspergillus niger</i> Journal of Proteome Research, 2012, 11, 2807-2818.	3.7	41
58	Cooperative induction of apoptosis in <scp>NRAS</scp> mutant melanoma by inhibition of <scp>MEK</scp> and <scp>ROCK</scp> . Pigment Cell and Melanoma Research, 2015, 28, 307-317.	3.3	41
59	Fast and automated large-area imaging MALDI mass spectrometry in microprobe and microscope mode. International Journal of Mass Spectrometry, 2009, 285, 19-25.	1.5	37
60	Automated, feature-based image alignment for high-resolution imaging mass spectrometry of large biological samples. Journal of the American Society for Mass Spectrometry, 2008, 19, 823-832.	2.8	34
61	Flexibility in crosstalk between H2B ubiquitination and H3 methylation <i>in vivo</i> . EMBO Reports, 2014, 15, 1077-1084.	4.5	34
62	Signal Transduction Reaction Monitoring Deciphers Site-Specific PI3K-mTOR/MAPK Pathway Dynamics in Oncogene-Induced Senescence. Journal of Proteome Research, 2015, 14, 2906-2914.	3.7	33
63	High-Throughput Assessment of Kinome-wide Activation States. Cell Systems, 2019, 9, 366-374.e5.	6.2	33
64	Multistep mechanism of G-quadruplex resolution during DNA replication. Science Advances, 2021, 7, eabf8653.	10.3	29
65	In-Depth Profiling of Post-Translational Modifications on the Related Transcription Factor Complexes TFIID and SAGA. Journal of Proteome Research, 2009, 8, 5020-5030.	3.7	28
66	Spatio-temporal Analysis of Molecular Determinants of Neuronal Degeneration in the Aging Mouse Cerebellum. Molecular and Cellular Proteomics, 2013, 12, 1350-1362.	3.8	28
67	Association of Cell Adhesion Molecules Contactin-6 and Latrophilin-1 Regulates Neuronal Apoptosis. Frontiers in Molecular Neuroscience, 2016, 9, 143.	2.9	28
68	Crystal structure of the tubulin tyrosine carboxypeptidase complex VASH1–SVBP. Nature Structural and Molecular Biology, 2019, 26, 567-570.	8.2	28
69	Conserved crosstalk between histone deacetylation and H3K79 methylation generates DOT1Lâ€dose dependency in HDAC1â€deficient thymic lymphoma. EMBO Journal, 2019, 38, e101564.	7.8	28
70	Identification of a tumor-specific allo-HLA–restricted γÎTCR. Blood Advances, 2019, 3, 2870-2882.	5.2	28
71	MAPK-ERK is a central pathway in T-cell acute lymphoblastic leukemia that drives steroid resistance. Leukemia, 2021, 35, 3394-3405.	7.2	28
72	Arginine $\ddot{\text{I}}\in$ -stacking drives binding to fibrils of the Alzheimer protein Tau. Nature Communications, 2020, 11, 571.	12.8	28

#	Article	IF	CITATIONS
73	Smooth muscle-specific MMP17 (MT4-MMP) regulates the intestinal stem cell niche and regeneration after damage. Nature Communications, 2021, 12, 6741.	12.8	26
74	Improved Identification of Endogenous Peptides from Murine Nervous Tissue by Multiplexed Peptide Extraction Methods and Multiplexed Mass Spectrometric Analysis. Journal of Proteome Research, 2009, 8, 870-876.	3.7	25
75	Dimethyl isotope labeling assisted de novo peptide sequencing. Journal of the American Society for Mass Spectrometry, 2010, 21, 1957-1965.	2.8	25
76	Profiling of Diet-Induced Neuropeptide Changes in Rat Brain by Quantitative Mass Spectrometry. Analytical Chemistry, 2013, 85, 4594-4604.	6. 5	24
77	Imaging Mass Spectrometry-based Molecular Histology Differentiates Microscopically Identical and Heterogeneous Tumors. Journal of Proteome Research, 2013, 12, 1847-1855.	3.7	24
78	Differential proteomics reveals the hallmarks of seed development in common bean (Phaseolus) Tj ETQq0 0 0 rg	gBT/Qverlo	ock ₂ 30 Tf 50 5
79	Cysteamine–bicalutamide combination therapy corrects proximal tubule phenotype in cystinosis. EMBO Molecular Medicine, 2021, 13, e13067.	6.9	23
80	Direct screening for chromatin status on DNA barcodes in yeast delineates the regulome of H3K79 methylation by Dot1. ELife, 2016, 5 , .	6.0	22
81	Drug-Induced Epigenomic Plasticity Reprograms Circadian Rhythm Regulation to Drive Prostate Cancer toward Androgen Independence. Cancer Discovery, 2022, 12, 2074-2097.	9.4	22
82	Protein signatures associated with tumor cell dissemination in head and neck cancer. Journal of Proteomics, 2011, 74, 558-566.	2.4	21
83	Membrane-Depolarizing Channel Blockers Induce Selective Glioma Cell Death by Impairing Nutrient Transport and Unfolded Protein/Amino Acid Responses. Cancer Research, 2017, 77, 1741-1752.	0.9	21
84	Opposite Electron-Transfer Dissociation and Higher-Energy Collisional Dissociation Fragmentation Characteristics of Proteolytic K/R(X) _{<i>n</i>e>characteristics of Proteolytic K/R(X)_{<i>n</i>e>characteristics of Proteolytic K/R(X)_{<i i="" n<="">e>characteristics of Proteolytic K/R(X)_{<i li="" n<=""> e>characteristics of Proteolytics (X) e>characteristics of Proteolytics (X) e>characteristics of Proteolytics (X) e>characteristics (X) e>characteristi</i>}</i>}}}	3.7	21
85	Proteomic Analyses Uncover a New Function and Mode of Action for Mouse Homolog of Diaphanous 2 (mDia2)*. Molecular and Cellular Proteomics, 2015, 14, 1064-1078.	3.8	20
86	Unravelling the Neospora caninum secretome through the secreted fraction (ESA) and quantification of the discharged tachyzoite using high-resolution mass spectrometry-based proteomics. Parasites and Vectors, 2013, 6, 335.	2.5	15
87	Dot1 histone methyltransferases share a distributive mechanism but have highly diverged catalytic properties. Scientific Reports, 2015, 5, 9824.	3.3	15
88	PaDuA: A Python Library for High-Throughput (Phospho)proteomics Data Analysis. Journal of Proteome Research, 2019, 18, 576-584.	3.7	15
89	Cellular Imaging Using Matrix-Enhanced and Metal-Assisted SIMS. Methods in Molecular Biology, 2010, 656, 197-208.	0.9	15
90	Identification of Putative Substrates for the Periplasmic Chaperone YfgM in Escherichia coli Using Quantitative Proteomics. Molecular and Cellular Proteomics, 2015, 14, 216-226.	3.8	14

#	Article	IF	Citations
91	Combined EGFR and ROCK Inhibition in Triple-negative Breast Cancer Leads to Cell Death Via Impaired Autophagic Flux. Molecular and Cellular Proteomics, 2020, 19, 261-277.	3.8	14
92	Quantitative proteomic analysis of Rett iPSC-derived neuronal progenitors. Molecular Autism, 2020, 11, 38.	4.9	14
93	Deciphering the Proteome Dynamics during Development of Neurons Derived from Induced Pluripotent Stem Cells. Journal of Proteome Research, 2020, 19, 2391-2403.	3.7	14
94	Quantitative mapping of transcriptome and proteome dynamics during polarization of human iPSC-derived neurons. ELife, 2020, 9, .	6.0	14
95	The influence of the cholesterol microenvironment in tissue sections on molecular ionization efficiencies and distributions in ToF-SIMS. Applied Surface Science, 2006, 252, 6702-6705.	6.1	13
96	Database independent proteomics analysis of the ostrich and human proteome. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 407-412.	7.1	13
97	A System-wide Approach to Monitor Responses to Synergistic BRAF and EGFR Inhibition in Colorectal Cancer Cells. Molecular and Cellular Proteomics, 2018, 17, 1892-1908.	3.8	13
98	Gaining efficiency by parallel quantification and identification of iTRAQ-labeled peptides using HCD and decision tree guided CID/ETD on an LTQ Orbitrap. Analyst, The, 2010, 135, 2643.	3.5	12
99	Monitoring light/dark association dynamics of multi-protein complexes in cyanobacteria using size exclusion chromatography-based proteomics. Journal of Proteomics, 2016, 142, 33-44.	2.4	12
100	Temporal Quantitative Proteomics of mGluR-induced Protein Translation and Phosphorylation in Neurons. Molecular and Cellular Proteomics, 2020, 19, 1952-1968.	3.8	12
101	Phosphoproteome Dynamics in Onset and Maintenance of Oncogene-induced Senescence. Molecular and Cellular Proteomics, 2014, 13, 2089-2100.	3.8	11
102	Quantitative Proteomics Illuminates a Functional Interaction between mDia2 and the Proteasome. Journal of Proteome Research, 2016, 15, 4624-4637.	3.7	11
103	Elucidation of the pre-nucleation phase directing metal-organic framework formation. Cell Reports Physical Science, 2021, 2, 100680.	5.6	11
104	Combined Quantitative (Phospho)proteomics and Mass Spectrometry Imaging Reveal Temporal and Spatial Protein Changes in Human Intestinal Ischemia–Reperfusion. Journal of Proteome Research, 2022, 21, 49-66.	3.7	11
105	The encephalomyocarditis virus Leader promotes the release of virions inside extracellular vesicles via the induction of secretory autophagy. Nature Communications, 2022, 13, .	12.8	11
106	The physiology of Agaricus bisporus in semi-commercial compost cultivation appears to be highly conserved among unrelated isolates. Fungal Genetics and Biology, 2018, 112, 12-20.	2.1	9
107	Spinal Muscular Atrophy Patient iPSC-Derived Motor Neurons Display Altered Proteomes at Early Stages of Differentiation. ACS Omega, 2021, 6, 35375-35388.	3.5	9
108	Quantitative global phosphoproteomics of human umbilical vein endothelial cells after activation of the Rap signaling pathway. Molecular BioSystems, 2013, 9, 732.	2.9	8

#	Article	IF	CITATIONS
109	Diet-Induced Neuropeptide Expression: Feasibility of Quantifying Extended and Highly Charged Endogenous Peptide Sequences by Selected Reaction Monitoring. Analytical Chemistry, 2015, 87, 9966-9973.	6.5	8
110	Centrosomeâ€mediated microtubule remodeling during axon formation in human iPSCâ€derived neurons. EMBO Journal, 2021, 40, e106798.	7.8	8
111	Automated High-Throughput Method for the Fast, Robust, and Reproducible Enrichment of Newly Synthesized Proteins. Journal of Proteome Research, 2022, 21, 189-199.	3.7	8
112	Neuroproteomics of the Synapse: Subcellular Quantification of Protein Networks and Signaling Dynamics. Molecular and Cellular Proteomics, 2021, 20, 100087.	3.8	7
113	Angiomotin isoform 2 promotes binding of PALS1 to KIF13B at primary cilia and regulates ciliary length and signaling. Journal of Cell Science, 2022, 135, .	2.0	6
114	Characterization of Electron Transfer Dissociation in the Orbitrap Velos HCD Cell. Journal of the American Society for Mass Spectrometry, 2013, 24, 1663-1670.	2.8	5
115	Flexibility in crosstalk between H2B ubiquitination and H3 methylation in vivo. EMBO Reports, 2014, 15, 1220-1221.	4.5	4
116	The Role of Pseudo-Orthocaspase (SyOC) of Synechocystis sp. PCC 6803 in Attenuating the Effect of Oxidative Stress. Frontiers in Microbiology, 2021, 12, 634366.	3.5	4
117	Proteomics and Phosphoproteomics Profiling of Drug-Addicted BRAFi-Resistant Melanoma Cells. Journal of Proteome Research, 2021, 20, 4381-4392.	3.7	3
118	Tissue Analysis with High-Resolution Imaging Mass Spectrometry. Methods in Molecular Biology, 2009, 492, 295-308.	0.9	3
119	Actin from the apicomplexan Neospora caninum (NcACT) has different isoforms in 2D electrophoresis. Parasitology, 2019, 146, 33-41.	1.5	2
120	Effects of electron-transfer/higher-energy collisional dissociation (EThcD) on phosphopeptide analysis by data-independent acquisition. International Journal of Mass Spectrometry, 2020, 452, 116336.	1.5	1
121	Quantifying Positional Isomers (QPI) by Top-Down Mass Spectrometry. Molecular and Cellular Proteomics, 2021, 20, 100070.	3.8	1
122	High Resolution Mass Spectrometric Imaging of Cells and Tissue: MALDI and Surface Enhanced SIMS Put to Work. Microscopy and Microanalysis, 2006, 12, 1210-1211.	0.4	0
123	Feeding cycle alters the biophysics and molecular expression of voltageâ€gated Na + currents in rat hippocampal CA1 neurones. European Journal of Neuroscience, 2019, 49, 1418-1435.	2.6	0