
## Giandomenico D Iannetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4485221/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Neural processes responsible for the translation of sustained nociceptive inputs into subjective pain experience. Cerebral Cortex, 2023, 33, 634-650.                                  | 2.9 | 7         |
| 2  | Brain Responses to Surprising Stimulus Offsets: Phenomenology and Functional Significance.<br>Cerebral Cortex, 2022, 32, 2231-2244.                                                    | 2.9 | 4         |
| 3  | Limits of decoding mental states with fMRI. Cortex, 2022, 149, 101-122.                                                                                                                | 2.4 | 7         |
| 4  | Local spatial analysis: an easy-to-use adaptive spatial EEG filter. Journal of Neurophysiology, 2021, 125, 509-521.                                                                    | 1.8 | 7         |
| 5  | Hyperscanning Alone Cannot Prove Causality. Multibrain Stimulation Can. Trends in Cognitive Sciences, 2021, 25, 96-99.                                                                 | 7.8 | 64        |
| 6  | Waves of Change: Brain Sensitivity to Differential, not Absolute, Stimulus Intensity is Conserved Across Humans and Rats. Cerebral Cortex, 2021, 31, 949-960.                          | 2.9 | 13        |
| 7  | Feedforward and feedback pathways of nociceptive and tactile processing in human somatosensory system: A study of dynamic causal modeling of fMRI data. NeuroImage, 2021, 234, 117957. | 4.2 | 19        |
| 8  | Proving Causality in Hyperscanning: Multibrain Stimulation and Other Approaches: Response to Moreau and Dumas. Trends in Cognitive Sciences, 2021, 25, 544-545.                        | 7.8 | 9         |
| 9  | Towards a unified neural mechanism for reactive adaptive behaviour. Progress in Neurobiology, 2021, 204, 102115.                                                                       | 5.7 | 8         |
| 10 | Movement vigor: Frameworks, exceptions, and nomenclature. Behavioral and Brain Sciences, 2021, 44, e126.                                                                               | 0.7 | 0         |
| 11 | The Neural Origin of Nociceptive-Induced Gamma-Band Oscillations. Journal of Neuroscience, 2020, 40, 3478-3490.                                                                        | 3.6 | 30        |
| 12 | Ultralow-frequency neural entrainment to pain. PLoS Biology, 2020, 18, e3000491.                                                                                                       | 5.6 | 7         |
| 13 | Fine-Grained Mapping of Cortical Somatotopies in Chronic Complex Regional Pain Syndrome. Journal of Neuroscience, 2019, 39, 9185-9196.                                                 | 3.6 | 43        |
| 14 | Muscular effort increases hand-blink reflex magnitude. Neuroscience Letters, 2019, 702, 11-14.                                                                                         | 2.1 | 6         |
| 15 | Brain regions preferentially responding to transient and iso-intense painful or tactile stimuli.<br>NeuroImage, 2019, 192, 52-65.                                                      | 4.2 | 25        |
| 16 | The effect of salient stimuli on neural oscillations, isometric force, and their coupling. NeuroImage, 2019, 198, 221-230.                                                             | 4.2 | 39        |
| 17 | No temporal contrast enhancement of simple decreases in noxious heat. Journal of Neurophysiology, 2019, 121, 1778-1786.                                                                | 1.8 | 5         |
| 18 | Movement of environmental threats modifies the relevance of the defensive eye-blink in a spatially-tuned manner. Scientific Reports, 2019, 9, 3661.                                    | 3.3 | 9         |

| #  | Article                                                                                                                                                                               | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Spatial Patterns of Brain Activity Preferentially Reflecting Transient Pain and Stimulus Intensity.<br>Cerebral Cortex, 2019, 29, 2211-2227.                                          | 2.9  | 43        |
| 20 | Neurobiological mechanisms of TENS-induced analgesia. NeuroImage, 2019, 195, 396-408.                                                                                                 | 4.2  | 85        |
| 21 | The Value of Actions, in Time and Space. Trends in Cognitive Sciences, 2019, 23, 270-271.                                                                                             | 7.8  | 8         |
| 22 | Neural indicators of perceptual variability of pain across species. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1782-1791.            | 7.1  | 123       |
| 23 | Cognitive gadgets and cognitive priors. Behavioral and Brain Sciences, 2019, 42, e177.                                                                                                | 0.7  | 0         |
| 24 | Saliency Detection as a Reactive Process: Unexpected Sensory Events Evoke Corticomuscular Coupling. Journal of Neuroscience, 2018, 38, 2385-2397.                                     | 3.6  | 65        |
| 25 | Brain oscillations reflecting pain-related behavior in freely moving rats. Pain, 2018, 159, 106-118.                                                                                  | 4.2  | 40        |
| 26 | The search for pain biomarkers in the human brain. Brain, 2018, 141, 3290-3307.                                                                                                       | 7.6  | 170       |
| 27 | Tagging the musical beat: Neural entrainment or event-related potentials?. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11002-E11003. | 7.1  | 33        |
| 28 | An Action Field Theory of Peripersonal Space. Trends in Cognitive Sciences, 2018, 22, 1076-1090.                                                                                      | 7.8  | 150       |
| 29 | Temporal Profile and Limb-specificity of Phasic Pain-Evoked Changes in Motor Excitability.<br>Neuroscience, 2018, 386, 240-255.                                                       | 2.3  | 14        |
| 30 | Ineffectiveness of tactile gating shows cortical basis of nociceptive signaling in the Thermal Grill<br>Illusion. Scientific Reports, 2018, 8, 6584.                                  | 3.3  | 19        |
| 31 | Highâ€precision voluntary movements are largely independent of preceding vertex potentials elicited by sudden sensory events. Journal of Physiology, 2018, 596, 3655-3673.            | 2.9  | 9         |
| 32 | Somatotopic Representation of Second Pain in the Primary Somatosensory Cortex of Humans and Rodents. Journal of Neuroscience, 2018, 38, 5538-5550.                                    | 3.6  | 27        |
| 33 | Characterizing the Short-Term Habituation of Event-Related Evoked Potentials. ENeuro, 2018, 5, ENEURO.0014-18.2018.                                                                   | 1.9  | 20        |
| 34 | Pain outside the body: defensive peripersonal space deformation in trigeminal neuralgia. Scientific<br>Reports, 2017, 7, 12487.                                                       | 3.3  | 17        |
| 35 | Brain imaging tests for chronic pain: medical, legal and ethical issues and recommendations. Nature<br>Reviews Neurology, 2017, 13, 624-638.                                          | 10.1 | 220       |
| 36 | Rethinking blinking: No cognitive modulation of reflex eye protection in early onset blindness.<br>Clinical Neurophysiology, 2017, 128, 16-17.                                        | 1.5  | 6         |

Giandomenico D Iannetti

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A geometric model of defensive peripersonal space. Journal of Neurophysiology, 2016, 115, 218-225.                                                                                                         | 1.8 | 36        |
| 38 | Brain potentials evoked by intraepidermal electrical stimuli reflect the central sensitization of nociceptive pathways. Journal of Neurophysiology, 2016, 116, 286-295.                                    | 1.8 | 21        |
| 39 | Perceptual learning to discriminate the intensity and spatial location of nociceptive stimuli. Scientific Reports, 2016, 6, 39104.                                                                         | 3.3 | 12        |
| 40 | Gravitational cues modulate the shape of defensive peripersonal space. Current Biology, 2016, 26, R1133-R1134.                                                                                             | 3.9 | 26        |
| 41 | Laser-evoked cortical responses in freely-moving rats reflect the activation of C-fibre afferent pathways. Neurolmage, 2016, 128, 209-217.                                                                 | 4.2 | 19        |
| 42 | Pain in the ACC?. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E2474-5.                                                                                     | 7.1 | 136       |
| 43 | The "Pain Matrix―in Pain-Free Individuals. JAMA Neurology, 2016, 73, 755.                                                                                                                                  | 9.0 | 122       |
| 44 | Alpha and gamma oscillation amplitudes synergistically predict the perception of forthcoming nociceptive stimuli. Human Brain Mapping, 2016, 37, 501-514.                                                  | 3.6 | 93        |
| 45 | Issues in Pain Prediction – Beyond Pain and Gain. Trends in Neurosciences, 2016, 39, 640-642.                                                                                                              | 8.6 | 9         |
| 46 | Interpersonal interactions and empathy modulate perception of threat and defensive responses.<br>Scientific Reports, 2016, 6, 19353.                                                                       | 3.3 | 37        |
| 47 | The blink reflex magnitude is continuously adjusted according to both current and predicted stimulus position with respect to the face. Cortex, 2016, 81, 168-175.                                         | 2.4 | 22        |
| 48 | Painful Issues in Pain Prediction. Trends in Neurosciences, 2016, 39, 212-220.                                                                                                                             | 8.6 | 73        |
| 49 | Nociceptive-Evoked Potentials Are Sensitive to Behaviorally Relevant Stimulus Displacements in Egocentric Coordinates. ENeuro, 2016, 3, ENEURO.0151-15.2016.                                               | 1.9 | 14        |
| 50 | Assessment of nonlinear interactions in event-related potentials elicited by stimuli presented at short interstimulus intervals using single-trial data. Journal of Neurophysiology, 2015, 113, 3623-3633. | 1.8 | 6         |
| 51 | Was it a pain or a sound? Across-species variability in sensory sensitivity. Pain, 2015, 156, 2449-2457.                                                                                                   | 4.2 | 18        |
| 52 | Touch inhibits subcortical and cortical nociceptive responses. Pain, 2015, 156, 1936-1944.                                                                                                                 | 4.2 | 62        |
| 53 | Multiple linear regression to estimate time-frequency electrophysiological responses in single trials.<br>NeuroImage, 2015, 111, 442-453.                                                                  | 4.2 | 33        |
| 54 | How many peripersonal spaces?. Neuropsychologia, 2015, 70, 327-334.                                                                                                                                        | 1.6 | 170       |

4

| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Laser-Evoked Vertex Potentials Predict Defensive Motor Actions. Cerebral Cortex, 2015, 25, 4789-4798.                                                                            | 2.9  | 42        |
| 56 | Caloric vestibular stimulation modulates nociceptive evoked potentials. Experimental Brain Research, 2015, 233, 3393-3401.                                                       | 1.5  | 18        |
| 57 | Poor judgment of distance between nociceptive stimuli. Cognition, 2015, 143, 41-47.                                                                                              | 2.2  | 12        |
| 58 | Intracortical modulation, and not spinal inhibition, mediates placebo analgesia. European Journal of<br>Neuroscience, 2015, 41, 498-504.                                         | 2.6  | 20        |
| 59 | Evidence against pain specificity in the dorsal posterior insula. F1000Research, 2015, 4, 362.                                                                                   | 1.6  | 51        |
| 60 | A mixed effects model framework for the assessment of nonlinear interactions in event-related potentials (ERPs) elicited by identical successive stimuli. , 2014, 2014, 4543-6.  |      | 1         |
| 61 | Single-trial time–frequency analysis of electrocortical signals: Baseline correction and beyond.<br>NeuroImage, 2014, 84, 876-887.                                               | 4.2  | 107       |
| 62 | The primary somatosensory cortex contributes to the latest part of the cortical response elicited by nociceptive somatosensory stimuli in humans. NeuroImage, 2014, 84, 383-393. | 4.2  | 42        |
| 63 | Corrigendum to "Seeing facial expressions enhances placebo analgesia―[PAIN® 155(4) (2014) 666–673]<br>Pain, 2014, 155, 1676.                                                     | ·4.2 | 0         |
| 64 | Human Brain Responses to Concomitant Stimulation of Al̃´ and C Nociceptors. Journal of Neuroscience, 2014, 34, 11439-11451.                                                      | 3.6  | 75        |
| 65 | Seeing facial expressions enhances placebo analgesia. Pain, 2014, 155, 666-673.                                                                                                  | 4.2  | 25        |
| 66 | Pain relief by touch: A quantitative approach. Pain, 2014, 155, 635-642.                                                                                                         | 4.2  | 71        |
| 67 | Wholeâ€body mapping of spatial acuity for pain and touch. Annals of Neurology, 2014, 75, 917-924.                                                                                | 5.3  | 220       |
| 68 | The temporal order judgement of tactile and nociceptive stimuli is impaired by crossing the hands over the body midline. Pain, 2013, 154, 242-247.                               | 4.2  | 35        |
| 69 | Better Safe Than Sorry? The Safety Margin Surrounding the Body Is Increased by Anxiety. Journal of Neuroscience, 2013, 33, 14225-14230.                                          | 3.6  | 139       |
| 70 | Transcranial magnetic stimulation over human secondary somatosensory cortex disrupts perception of pain intensity. Cortex, 2013, 49, 2201-2209.                                  | 2.4  | 58        |
| 71 | The balance of feelings: Vestibular modulation of bodily sensations. Cortex, 2013, 49, 748-758.                                                                                  | 2.4  | 51        |
| 72 | Limb-specific autonomic dysfunction in complex regional pain syndrome modulated by wearing prism glasses. Pain, 2013, 154, 2463-2468.                                            | 4.2  | 49        |

| #  | Article                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Spatial Sensory Organization and Body Representation in Pain Perception. Current Biology, 2013, 23, R164-R176.                                                                      | 3.9  | 152       |
| 74 | Beyond metaphor: contrasting mechanisms of social and physical pain. Trends in Cognitive Sciences, 2013, 17, 371-378.                                                               | 7.8  | 156       |
| 75 | A Fovea for Pain at the Fingertips. Current Biology, 2013, 23, 496-500.                                                                                                             | 3.9  | 33        |
| 76 | Neural coding of nociceptive stimuli—from rat spinal neurones to human perception. Pain, 2013, 154, 1263-1273.                                                                      | 4.2  | 61        |
| 77 | A novel approach to predict subjective pain perception from single-trial laser-evoked potentials.<br>NeuroImage, 2013, 81, 283-293.                                                 | 4.2  | 113       |
| 78 | Novelty is not enough: laser-evoked potentials are determined by stimulus saliency, not absolute novelty. Journal of Neurophysiology, 2013, 109, 692-701.                           | 1.8  | 86        |
| 79 | Bypassing Primary Sensory Cortices—A Direct Thalamocortical Pathway for Transmitting Salient<br>Sensory Information. Cerebral Cortex, 2013, 23, 1-11.                               | 2.9  | 83        |
| 80 | Primary sensory cortices contain distinguishable spatial patterns of activity for each sense. Nature<br>Communications, 2013, 4, 1979.                                              | 12.8 | 135       |
| 81 | Unmasking the obligatory components of nociceptive event-related brain potentials. Journal of Neurophysiology, 2013, 110, 2312-2324.                                                | 1.8  | 24        |
| 82 | Pinprick-evoked brain potentials: a novel tool to assess central sensitization of nociceptive pathways in humans. Journal of Neurophysiology, 2013, 110, 1107-1116.                 | 1.8  | 63        |
| 83 | Gamma-Band Oscillations in the Primary Somatosensory Cortex—A Direct and Obligatory Correlate of<br>Subjective Pain Intensity. Journal of Neuroscience, 2012, 32, 7429-7438.        | 3.6  | 273       |
| 84 | Linking Pain and the Body: Neural Correlates of Visually Induced Analgesia. Journal of Neuroscience, 2012, 32, 2601-2607.                                                           | 3.6  | 129       |
| 85 | Spatially defined modulation of skin temperature and hand ownership of both hands in patients with unilateral complex regional pain syndrome. Brain, 2012, 135, 3676-3686.          | 7.6  | 93        |
| 86 | Linguistic synaesthesia, perceptual synaesthesia, and the interaction between multiple sensory modalities. Pragmatics and Cognition, 2012, 20, 135-167.                             | 0.4  | 21        |
| 87 | Defensive peripersonal space: the blink reflex evoked by hand stimulation is increased when the hand is near the face. Journal of Neurophysiology, 2012, 107, 880-889.              | 1.8  | 115       |
| 88 | Fine-Grained Nociceptive Maps in Primary Somatosensory Cortex. Journal of Neuroscience, 2012, 32, 17155-17162.                                                                      | 3.6  | 108       |
| 89 | To Blink or Not to Blink: Fine Cognitive Tuning of the Defensive Peripersonal Space. Journal of Neuroscience, 2012, 32, 12921-12927.                                                | 3.6  | 90        |
| 90 | Automated single-trial assessment of laser-evoked potentials as an objective functional diagnostic tool for the nociceptive system. Clinical Neurophysiology, 2012, 123, 2437-2445. | 1.5  | 14        |

| #   | Article                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The primary somatosensory cortex largely contributes to the early part of the cortical response elicited by nociceptive stimuli. NeuroImage, 2012, 59, 1571-1581.                                                                                                                    | 4.2 | 113       |
| 92  | The "pain matrix―reloaded. Scandinavian Journal of Pain, 2012, 3, 173-173.                                                                                                                                                                                                           | 1.3 | 1         |
| 93  | Seeing touch and pain in a stranger modulates the cortical responses elicited by somatosensory but not auditory stimulation. Human Brain Mapping, 2012, 33, 2873-2884.                                                                                                               | 3.6 | 18        |
| 94  | Dishabituation of laser-evoked EEG responses: dissecting the effect of certain and uncertain changes in stimulus spatial location. Experimental Brain Research, 2012, 218, 361-372.                                                                                                  | 1.5 | 30        |
| 95  | Taking into account latency, amplitude, and morphology: improved estimation of single-trial ERPs by wavelet filtering and multiple linear regression. Journal of Neurophysiology, 2011, 106, 3216-3229.                                                                              | 1.8 | 48        |
| 96  | A multisensory investigation of the functional significance of the "pain matrixâ€: Neurolmage, 2011, 54, 2237-2249.                                                                                                                                                                  | 4.2 | 446       |
| 97  | Single-trial detection of somatosensory evoked potentials by probabilistic independent component analysis and wavelet filtering. Clinical Neurophysiology, 2011, 122, 1429-1439.                                                                                                     | 1.5 | 40        |
| 98  | The pain matrix reloaded. Progress in Neurobiology, 2011, 93, 111-124.                                                                                                                                                                                                               | 5.7 | 721       |
| 99  | S110 THE DEFENSIVE BLINK REFLEX EVOKED BY HAND STIMULATION IS INCREASED WHEN THE HAND ENTERS<br>THE PERIPERSONAL SPACE SURROUNDING THE FACE. European Journal of Pain Supplements, 2011, 5,<br>199-199.                                                                              | 0.0 | Ο         |
| 100 | S111 COGNITIVE MODULATION OF THE EXCITABILITY OF BRAINSTEM DEFENSIVE REFLEXES. European Journal of Pain Supplements, 2011, 5, 199-199.                                                                                                                                               | 0.0 | 0         |
| 101 | F114 PARALLEL PROCESSING OF NOCICEPTIVE AND NON-NOCICEPTIVE SOMATOSENSORY INFORMATION IN S1<br>AND S2: EVIDENCE FROM DYNAMIC CAUSAL MODELLING OF fMRI DATA. European Journal of Pain<br>Supplements, 2011, 5, 107-107.                                                               | 0.0 | 0         |
| 102 | S112 LASER-INDUCED GAMMA OSCILLATIONS ROBUSTLY CORRELATE WITH PAIN PERCEPTION REGARDLESS OF STIMULUS SALIENCY. European Journal of Pain Supplements, 2011, 5, 199-200.                                                                                                               | 0.0 | 0         |
| 103 | S169 THE DIRECTION MATTERS: LASER-EVOKED POTENTIALS ARE DETERMINED BY STIMULUS SALIENCY, NOT BY ABSOLUTE STIMULUS NOVELTY. European Journal of Pain Supplements, 2011, 5, 216-216.                                                                                                   | 0.0 | Ο         |
| 104 | A supramodal representation of the body surface. Neuropsychologia, 2011, 49, 1194-1201.                                                                                                                                                                                              | 1.6 | 84        |
| 105 | NeuPSIG guidelines on neuropathic pain assessment. Pain, 2011, 152, 14-27.                                                                                                                                                                                                           | 4.2 | 871       |
| 106 | The analgesic effect of crossing the arms. Pain, 2011, 152, 1418-1423.                                                                                                                                                                                                               | 4.2 | 68        |
| 107 | Corrigendum to "Low intensity intra-epidermal electrical stimulation can activate Aδ-nociceptors<br>selectively―[Pain 150 (2010) 199–207]. Pain, 2011, 152, 1212.                                                                                                                    | 4.2 | 0         |
| 108 | Parallel Processing of Nociceptive and Non-nociceptive Somatosensory Information in the Human<br>Primary and Secondary Somatosensory Cortices: Evidence from Dynamic Causal Modeling of<br>Functional Magnetic Resonance Imaging Data. Journal of Neuroscience, 2011, 31, 8976-8985. | 3.6 | 74        |

| #   | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Dishabituation of Laser-evoked EEG Responses: Dissecting the Effect of Certain and Uncertain Changes<br>in Stimulus Modality. Journal of Cognitive Neuroscience, 2011, 23, 2822-2837.                     | 2.3 | 62        |
| 110 | Can the functional MRI responses to physical pain really tell us why social rejection "hurts"?.<br>Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E343-E343. | 7.1 | 14        |
| 111 | Nociceptive Steady-State Evoked Potentials Elicited by Rapid Periodic Thermal Stimulation of Cutaneous Nociceptors. Journal of Neuroscience, 2011, 31, 6079-6087.                                         | 3.6 | 76        |
| 112 | From the neuromatrix to the pain matrix (and back). Experimental Brain Research, 2010, 205, 1-12.                                                                                                         | 1.5 | 466       |
| 113 | Functional exploration of the human spinal cord during voluntary movement and somatosensory stimulation. Magnetic Resonance Imaging, 2010, 28, 1216-1224.                                                 | 1.8 | 24        |
| 114 | Low intensity intra-epidermal electrical stimulation can activate Al <sup>2</sup> -nociceptors selectively. Pain, 2010, 150, 199-207.                                                                     | 4.2 | 171       |
| 115 | Coupling of simultaneously acquired electrophysiological and haemodynamic responses during visual stimulation. Magnetic Resonance Imaging, 2010, 28, 1066-1077.                                           | 1.8 | 12        |
| 116 | Stimulus Novelty, and Not Neural Refractoriness, Explains the Repetition Suppression of Laser-Evoked Potentials. Journal of Neurophysiology, 2010, 104, 2116-2124.                                        | 1.8 | 55        |
| 117 | Assessment of nonlinear interactions in event-related potentials (ERPs) elicited by stimuli presented at short inter-stimulus intervals. , 2010, 2010, 4834-7.                                            |     | 1         |
| 118 | Multiple Somatotopic Representations of Heat and Mechanical Pain in the Operculo-Insular Cortex: A<br>High-Resolution fMRI Study. Journal of Neurophysiology, 2010, 104, 2863-2872.                       | 1.8 | 129       |
| 119 | Functional characterisation of sensory ERPs using probabilistic ICA: Effect of stimulus modality and stimulus location. Clinical Neurophysiology, 2010, 121, 577-587.                                     | 1.5 | 19        |
| 120 | EEG signatures of auditory activity correlate with simultaneously recorded fMRI responses in humans. NeuroImage, 2010, 49, 849-864.                                                                       | 4.2 | 75        |
| 121 | A novel approach for enhancing the signal-to-noise ratio and detecting automatically event-related potentials (ERPs) in single trials. NeuroImage, 2010, 50, 99-111.                                      | 4.2 | 148       |
| 122 | A quantitative comparison of BOLD fMRI responses to noxious and innocuous stimuli in the human spinal cord. NeuroImage, 2010, 50, 1408-1415.                                                              | 4.2 | 55        |
| 123 | Characterizing the Cortical Activity through Which Pain Emerges from Nociception. Journal of Neuroscience, 2009, 29, 7909-7916.                                                                           | 3.6 | 134       |
| 124 | Nociceptive Laser-Evoked Brain Potentials Do Not Reflect Nociceptive-Specific Neural Activity. Journal of Neurophysiology, 2009, 101, 3258-3269.                                                          | 1.8 | 307       |
| 125 | Placebo conditioning and placebo analgesia modulate a common brain network during pain anticipation and perception. Pain, 2009, 145, 24-30.                                                               | 4.2 | 148       |
| 126 | Are There Nociceptive-Specific Brain Potentials? Reply to Baumgätner and Treede. Journal of<br>Neurophysiology, 2009, 102, 3075-3076.                                                                     | 1.8 | 2         |

| #   | Article                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Combining EEG and fMRI in Pain Research. , 2009, , 365-384.                                                                                                                                  |     | 2         |
| 128 | Across-trial averaging of event-related EEG responses and beyond. Magnetic Resonance Imaging, 2008, 26, 1041-1054.                                                                           | 1.8 | 345       |
| 129 | A review of the evidence against the "first come first served―hypothesis. Comment on Truini et al.<br>[Pain 2007;131:43–7]. Pain, 2008, 136, 219-221.                                        | 4.2 | 16        |
| 130 | Topodiagnostic implications of hemiataxia: An MRI-based brainstem mapping analysis. NeuroImage, 2008, 39, 1625-1632.                                                                         | 4.2 | 25        |
| 131 | Regions of interest analysis in pharmacological fMRI: How do the definition criteria influence the inferred result?. NeuroImage, 2008, 40, 121-132.                                          | 4.2 | 72        |
| 132 | Determinants of Laser-Evoked EEG Responses: Pain Perception or Stimulus Saliency?. Journal of Neurophysiology, 2008, 100, 815-828.                                                           | 1.8 | 340       |
| 133 | The Enhancement of the N1 Wave Elicited by Sensory Stimuli Presented at Very Short Inter-Stimulus<br>Intervals Is a General Feature across Sensory Systems. PLoS ONE, 2008, 3, e3929.        | 2.5 | 65        |
| 134 | Functional Responses in the Human Spinal Cord during Willed Motor Actions: Evidence for Side- and Rate-Dependent Activity. Journal of Neuroscience, 2007, 27, 4182-4190.                     | 3.6 | 87        |
| 135 | 15 BRAIN POTENTIALS EVOKED BY MECHANICAL STIMULI: A NEW TOOL FOR ASSESSING CENTRAL SENSITISATION?. European Journal of Pain, 2007, 11, S7-S7.                                                | 2.8 | 0         |
| 136 | 204 PINPRICK-EVOKED POTENTIALS (PEPS): A NOVEL TOOL TO ASSESS CENTRAL SENSITISATION IN HUMANS.<br>European Journal of Pain, 2007, 11, S89-S89.                                               | 2.8 | 3         |
| 137 | 222 THE SUPRASPINAL REPRESENTATION OF CENTRAL SENSITIZATION IN HUMANS. European Journal of Pain, 2007, 11, S98-S98.                                                                          | 2.8 | 0         |
| 138 | BOLD functional MRI in disease and pharmacological studies: room for improvement?. Magnetic<br>Resonance Imaging, 2007, 25, 978-988.                                                         | 1.8 | 196       |
| 139 | Diagnostic accuracy of trigeminal reflex testing in trigeminal neuralgia. Neurology, 2006, 66, 139-141.                                                                                      | 1.1 | 67        |
| 140 | Automated single-trial measurement of amplitude and latency of laser-evoked potentials (LEPs) using multiple linear regression. Clinical Neurophysiology, 2006, 117, 1331-1344.              | 1.5 | 50        |
| 141 | Measurement ofÂskin temperature after infrared laser stimulation. Neurophysiologie Clinique, 2006,<br>36, 207-218.                                                                           | 2.2 | 50        |
| 142 | 307 THE SUPRASPINAL REPRESENTATION OF CENTRAL SENSITIZATION IN HUMANS. European Journal of Pain, 2006, 10, S82b-S82.                                                                         | 2.8 | 0         |
| 143 | 340 SIMILAR NOCICEPTIVE AFFERENTS MEDIATE PSYCHOPHYSICAL AND ELECTROPHYSIOLOGICAL RESPONSES TO THERMAL STIMULATION. European Journal of Pain, 2006, 10, S91-S91.                             | 2.8 | 0         |
| 144 | Similar nociceptive afferents mediate psychophysical and electrophysiological responses to heat stimulation of glabrous and hairy skin in humans. Journal of Physiology, 2006, 577, 235-248. | 2.9 | 150       |

| #   | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Chapter 6 Brainstem functional imaging in humans. Supplements To Clinical Neurophysiology, 2006, 58, 52-67.                                                                                                                                  | 2.1 | 23        |
| 146 | Chapter 14 Diagnosis of trigeminal neuralgia: a new appraisal based on clinical and neurophysiological findings. Supplements To Clinical Neurophysiology, 2006, 58, 171-186.                                                                 | 2.1 | 21        |
| 147 | Chapter 28 Brainstem reflexes and their relevance to pain. Handbook of Clinical Neurology / Edited By<br>P J Vinken and G W Bruyn, 2006, 81, 411-IX.                                                                                         | 1.8 | 4         |
| 148 | Chapter 4 3D brainstem topodiagnosis – a voxel-based model analyzing MR imaging data. Supplements<br>To Clinical Neurophysiology, 2006, 58, 26-37.                                                                                           | 2.1 | 0         |
| 149 | On the interpretation of temporal differences of BOLD fMRI responses to nociceptive stimulation.<br>Journal of Neurophysiology, 2005, 93, 3718-3719.                                                                                         | 1.8 | 3         |
| 150 | A longitudinal fMRI study on motor activity in patients with multiple sclerosis. Brain, 2005, 128, 2146-2153.                                                                                                                                | 7.6 | 87        |
| 151 | From The Cover: Pharmacological modulation of pain-related brain activity during normal and central sensitization states in humans. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18195-18200. | 7.1 | 251       |
| 152 | Brainstem reflex circuits revisited. Brain, 2005, 128, 386-394.                                                                                                                                                                              | 7.6 | 151       |
| 153 | A topodiagnostic investigation on body lateropulsion in medullary infarcts. Neurology, 2005, 64, 716-718.                                                                                                                                    | 1.1 | 70        |
| 154 | Laser-evoked potentials: normative values. Clinical Neurophysiology, 2005, 116, 821-826.                                                                                                                                                     | 1.5 | 135       |
| 155 | Simultaneous recording of laser-evoked brain potentials and continuous, high-field functional magnetic resonance imaging in humans. NeuroImage, 2005, 28, 708-719.                                                                           | 4.2 | 123       |
| 156 | Removal of FMRI environment artifacts from EEG data using optimal basis sets. NeuroImage, 2005, 28, 720-737.                                                                                                                                 | 4.2 | 510       |
| 157 | Laser evoked potentials and carbamazepine in epileptic patients. Neurophysiologie Clinique, 2005, 35, 93-96.                                                                                                                                 | 2.2 | 2         |
| 158 | A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain, 2005, 114, 397-407.                                                                                                  | 4.2 | 279       |
| 159 | Laser guns and hot plates. Pain, 2005, 116, 1-3.                                                                                                                                                                                             | 4.2 | 76        |
| 160 | Operculoinsular cortex encodes pain intensity at the earliest stages of cortical processing as indicated by amplitude of laser-evoked potentials in humans. Neuroscience, 2005, 131, 199-208.                                                | 2.3 | 188       |
| 161 | Laser evoked potentials for assessing sensory neuropathy in human patients. Neuroscience Letters, 2004, 361, 25-28.                                                                                                                          | 2.1 | 50        |
| 162 | Aδ nociceptor response to laser stimuli: selective effect of stimulus duration on skin temperature,<br>brain potentials and pain perception. Clinical Neurophysiology, 2004, 115, 2629-2637.                                                 | 1.5 | 105       |

| #   | Article                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Is Ross syndrome a dysautonomic disorder only? An electrophysiologic and histologic study. Clinical<br>Neurophysiology, 2003, 114, 7-16.                                        | 1.5 | 44        |
| 164 | Laser-evoked potentials in post-herpetic neuralgia. Clinical Neurophysiology, 2003, 114, 702-709.                                                                               | 1.5 | 54        |
| 165 | Representation of different trigeminal divisions within the primary and secondary human somatosensory cortex. NeuroImage, 2003, 19, 906-912.                                    | 4.2 | 54        |
| 166 | Trigeminal responses to laser stimuli. Neurophysiologie Clinique, 2003, 33, 315-324.                                                                                            | 2.2 | 38        |
| 167 | Reduced habituation to experimental pain in migraine patients: a CO2 laser evoked potential study.<br>Pain, 2003, 105, 57-64.                                                   | 4.2 | 205       |
| 168 | Unmyelinated trigeminal pathways as assessed by laser stimuli in humans. Brain, 2003, 126, 2246-2256.                                                                           | 7.6 | 148       |
| 169 | Evidence of a Specific Spinal Pathway for the Sense of Warmth in Humans. Journal of<br>Neurophysiology, 2003, 89, 562-570.                                                      | 1.8 | 122       |
| 170 | fMRI/EEG in paroxysmal activity elicited by elimination of central vision and fixation. Neurology, 2002, 58, 976-979.                                                           | 1.1 | 53        |
| 171 | Cortical motor reorganization after a single clinical attack of multiple sclerosis. Brain, 2002, 125, 1607-1615.                                                                | 7.6 | 171       |
| 172 | Nociceptive Quality of the Laser-Evoked Blink Reflex in Humans. Journal of Neurophysiology, 2002, 87, 1386-1394.                                                                | 1.8 | 24        |
| 173 | Contribution of Corticospinal Tract Damage to Cortical Motor Reorganization after a Single Clinical<br>Attack of Multiple Sclerosis. NeuroImage, 2002, 17, 1837-1843.           | 4.2 | 107       |
| 174 | Occurrence of adrenergic nerve fibers in human thymus during immune response. Neurochemistry<br>International, 2002, 40, 211-221.                                               | 3.8 | 16        |
| 175 | An Artificial Neural Network for 3D Localization of Brainstem Functional Lesions. Lecture Notes in<br>Computer Science, 2002, , 186-197.                                        | 1.3 | 0         |
| 176 | The problem of conduction velocity of the human spinothalamic tract. Clinical Neurophysiology, 2001, 112, 1113-1114.                                                            | 1.5 | 7         |
| 177 | A Morphometric Study of Age Changes in the Rat Optic Nerve. Ophthalmologica, 2001, 215, 366-371.                                                                                | 1.9 | 14        |
| 178 | Small-fiber dysfunction in trigeminal neuralgia. Neurology, 2001, 56, 1722-1726.                                                                                                | 1.1 | 96        |
| 179 | Metabolic Changes in Rabbit Lens Induced by Treatment with Dexamethasone. Ophthalmic Research, 2001, 33, 68-74.                                                                 | 1.9 | 13        |
| 180 | Usefulness of dorsal laser evoked potentials in patients with spinal cord damage: report of two<br>cases. Journal of Neurology, Neurosurgery and Psychiatry, 2001, 71, 792-794. | 1.9 | 36        |

11

GIANDOMENICO D IANNETTI

| #   | Article                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Conduction velocity of the human spinothalamic tract as assessed by laser evoked potentials.<br>NeuroReport, 2000, 11, 3029-3032.                                               | 1.2 | 52        |
| 182 | Acetylcholinesterase activity in rat thymus after immunostimulation with interleukin $\hat{I}^2$ . Annals of Anatomy, 2000, 182, 243-248.                                       | 1.9 | 8         |
| 183 | Three-dimensional mapping of brainstem functional lesions. Medical and Biological Engineering and Computing, 2000, 38, 639-644.                                                 | 2.8 | 11        |
| 184 | Topographical distribution of pinprick and warmth thresholds to CO2 laser stimulation on the human skin. Neuroscience Letters, 2000, 285, 115-118.                              | 2.1 | 53        |
| 185 | Quantification of acetylcholinesterase-positive structures in human thymus during development and aging. Neurochemistry International, 2000, 36, 75-82.                         | 3.8 | 10        |
| 186 | Trigeminal small-fibre dysfunction in patients with diabetes mellitus: a study with laser evoked potentials and corneal reflex. Clinical Neurophysiology, 2000, 111, 2264-2267. | 1.5 | 23        |
| 187 | Determination of dopamine D1 receptors in the human uveo scleral tissue by light microscope autoradiography. International Ophthalmology, 1999, 23, 171-179.                    | 1.4 | 8         |
| 188 | Catecholaminergic Innervation of the Human Dura Mater Involved in Headache. Headache, 1998, 38, 352-355.                                                                        | 3.9 | 17        |
| 189 | Nerve fibers—mast cells correlation in the rat parietal pleura. Respiration Physiology, 1998, 113, 181-188.                                                                     | 2.7 | 6         |