Yaoting Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4485115/publications.pdf Version: 2024-02-01

YAOTING WU

#	Article	IF	CITATIONS
1	Binary icosahedral clusters of hard spheres in spherical confinement. Nature Physics, 2021, 17, 128-134.	16.7	42
2	Quantitative 3D real-space analysis of Laves phase supraparticles. Nature Communications, 2021, 12, 3980.	12.8	12
3	Designing Strong Optical Absorbers <i>via</i> Continuous Tuning of Interparticle Interaction in Colloidal Gold Nanocrystal Assemblies. ACS Nano, 2019, 13, 7493-7501.	14.6	18
4	Nanocrystal Core Size and Shape Substitutional Doping and Underlying Crystalline Order in Nanocrystal Superlattices. ACS Nano, 2019, 13, 5712-5719.	14.6	30
5	3D Nanofabrication via Chemoâ€Mechanical Transformation of Nanocrystal/Bulk Heterostructures. Advanced Materials, 2018, 30, e1800233.	21.0	15
6	Improved Chemical and Colloidal Stability of Gold Nanoparticles through Dendron Capping. Langmuir, 2018, 34, 13333-13338.	3.5	21
7	Interplay between spherical confinement and particle shape on the self-assembly of rounded cubes. Nature Communications, 2018, 9, 2228.	12.8	81
8	Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices. Nano Letters, 2017, 17, 1387-1394.	9.1	40
9	Directional Carrier Transfer in Strongly Coupled Binary Nanocrystal Superlattice Films Formed by Assembly and <i>in Situ</i> Ligand Exchange at a Liquid–Air Interface. Journal of Physical Chemistry C, 2017, 121, 4146-4157.	3.1	19
10	Anisotropic Cracking of Nanocrystal Superlattices. Nano Letters, 2017, 17, 6501-6506.	9.1	18
11	Design, Self-Assembly, and Switchable Wettability in Hydrophobic, Hydrophilic, and Janus Dendritic Ligand–Gold Nanoparticle Hybrid Materials. Chemistry of Materials, 2017, 29, 8737-8746.	6.7	40
12	Preparation and Self-Assembly of Dendronized Janus Fe ₃ O ₄ –Pt and Fe ₃ O ₄ –Au Heterodimers. ACS Nano, 2017, 11, 7958-7966.	14.6	46
13	High-strength magnetically switchable plasmonic nanorods assembled from a binary nanocrystal mixture. Nature Nanotechnology, 2017, 12, 228-232.	31.5	75
14	Large-Area Nanoimprinted Colloidal Au Nanocrystal-Based Nanoantennas for Ultrathin Polarizing Plasmonic Metasurfaces. Nano Letters, 2015, 15, 5254-5260.	9.1	73