Mark Greiner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4484997/publications.pdf

Version: 2024-02-01

46 papers

4,318 citations

257450

24

h-index

254184 43 g-index

47 all docs

47 docs citations

47 times ranked

7668 citing authors

#	Article	IF	CITATIONS
1	FAIR data enabling new horizons for materials research. Nature, 2022, 604, 635-642.	27.8	81
2	Oxygen-Doped Carbon Supports Modulate the Hydrogenation Activity of Palladium Nanoparticles through Electronic Metalâ€"Support Interactions. ACS Catalysis, 2022, 12, 7344-7356.	11.2	22
3	Near ambient pressure photoelectron spectro-microscopy: from gas–solid interface to operando devices. Journal Physics D: Applied Physics, 2021, 54, 204004.	2.8	11
4	Inelastic electron scattering by the gas phase in near ambient pressure XPS measurements. Surface and Interface Analysis, 2021, 53, 605-617.	1.8	8
5	A discussion of approaches for fitting asymmetric signals in Xâ€ray photoelectron spectroscopy (XPS), noting the importance of Voigtâ€ike peak shapes. Surface and Interface Analysis, 2021, 53, 689-707.	1.8	20
6	Isolated Pd atoms in a silver matrix: Spectroscopic and chemical properties. Journal of Chemical Physics, 2021, 154, 184703.	3.0	10
7	Surface composition of AgPd single-atom alloy catalyst in an oxidative environment. Journal of Chemical Physics, 2021, 154, 174708.	3.0	4
8	Probing catalytic surfaces by correlative scanning photoemission electron microscopy and atom probe tomography. Journal of Materials Chemistry A, 2020, 8, 388-400.	10.3	19
9	In situ observation of oscillatory redox dynamics of copper. Nature Communications, 2020, 11, 3554.	12.8	27
10	Method to correct ambient pressure XPS for the distortion caused by the gas. Applied Surface Science, 2020, 530, 147243.	6.1	11
11	Formation of a 2D Meta-stable Oxide by Differential Oxidation of AgCu Alloys. ACS Applied Materials & Samp; Interfaces, 2020, 12, 23595-23605.	8.0	9
12	Pd@H _{<i>y</i>} WO _{3â€"<i>x</i>} Nanowires Efficiently Catalyze the CO ₂ Heterogeneous Reduction Reaction with a Pronounced Light Effect. ACS Applied Materials & Applied	8.0	52
13	Phase Coexistence of Multiple Copper Oxides on AgCu Catalysts during Ethylene Epoxidation. ACS Catalysis, 2018, 8, 2286-2295.	11.2	34
14	The Selective Species in Ethylene Epoxidation on Silver. ACS Catalysis, 2018, 8, 3844-3852.	11.2	62
15	The ESEM as In Situ Platform for the Study of Gas-Solid Interactions. Microscopy and Microanalysis, 2018, 24, 344-345.	0.4	1
16	Free-atom-like d states in single-atom alloy catalysts. Nature Chemistry, 2018, 10, 1008-1015.	13.6	368
17	Multi-Scale Red-Ox Dynamics of Active Metal Catalysts Revealed by a Combination of <i>In Situ</i> Scanning and Transmission Electron Microscopy. Microscopy and Microanalysis, 2017, 23, 922-923.	0.4	2
18	Ethylene Epoxidation at the Phase Transition of Copper Oxides. Journal of the American Chemical Society, 2017, 139, 11825-11832.	13.7	42

#	Article	IF	CITATIONS
19	Improved characteristics for OTFT with HfO<inf>2</inf> gate dielectric by using chlorinated indium tin oxide gate electrode. , 2016 , , .		1
20	Monitoring the Dynamics of Heterogeneous Catalysts by Electron Microscopy. Microscopy and Microanalysis, 2016, 22, 736-737.	0.4	2
21	The electronic structure of iridium oxide electrodes active in water splitting. Physical Chemistry Chemical Physics, 2016, 18, 2292-2296.	2.8	302
22	Thermal annealing effect on electrical characteristics of CuPc thin-film transistors on glass with ZrO <inf>2</inf> as gate dielectric., 2015,,.		0
23	The oxidation of copper catalysts during ethylene epoxidation. Physical Chemistry Chemical Physics, 2015, 17, 25073-25089.	2.8	43
24	High Catalytic Synergism between the Components of the Rhenium Complex@Silver Hybrid Material in Alkene Epoxidations. ChemCatChem, 2014, 6, 1935-1939.	3.7	12
25	Thin-film metal oxides in organic semiconductor devices: their electronic structures, work functions and interfaces. NPG Asia Materials, 2013, 5, e55-e55.	7.9	322
26	Metal/Metalâ€Oxide Interfaces: How Metal Contacts Affect the Work Function and Band Structure of MoO ₃ . Advanced Functional Materials, 2013, 23, 215-226.	14.9	326
27	Comparison of CuPc-based organic thin-film transistors made by different dielectric structures. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 012201.	1.2	3
28	Transition Metal Oxide Work Functions: The Influence of Cation Oxidation State and Oxygen Vacancies. Advanced Functional Materials, 2012, 22, 4557-4568.	14.9	694
29	Universal energy-level alignment of molecules on metal oxides. Nature Materials, 2012, 11, 76-81.	27.5	836
30	Work function of fluorine doped tin oxide. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2011, 29, .	2.1	163
31	Effects of different Ar/O <inf>2</inf> ratios on the electrical properties of CuPc-based TFTs with ZrO <inf>2</inf> gate dielectric. , 2011, , .		0
32	Highly simplified phosphorescent organic light emitting diode with >20% external quantum efficiency at >10,000â€,cd/m2. Applied Physics Letters, 2011, 98, .	3.3	100
33	Unlocking the full potential of organic light-emitting diodes on flexible plastic. Nature Photonics, 2011, 5, 753-757.	31.4	362
34	Optical design of organic light emitting diodes. Journal of Applied Physics, 2011, 109, 053107.	2.5	35
35	Effects of interfacial oxide layers of the electrode metals on the electrical characteristics of organic thin-film transistors with HfO2 gate dielectric. Journal of Applied Physics, 2011, 110, 044108.	2.5	9
36	Effect of electrostatic screening on apparent shifts in photoemission spectra near metal/organic interfaces. Physical Review B, 2010, 81, .	3.2	35

3

#	Article	IF	CITATION
37	Carrier mobility of organic semiconductors based on current-voltage characteristics. Journal of Applied Physics, 2010, 107, .	2.5	61
38	UV ozone passivation of the metal/dielectric interface for HfO2-based organic thin film transistors. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, 1100-1103.	1.2	7
39	Depleted-heterojunction colloidal quantum dot photovoltaics employing low-cost electrical contacts. Applied Physics Letters, 2010, 97, 023109.	3.3	39
40	Direct hole injection in to 4,4′-N,N′-dicarbazole-biphenyl: A simple pathway to achieve efficient organic light emitting diodes. Journal of Applied Physics, 2010, 108, .	2.5	48
41	Controlling carrier accumulation and exciton formation in organic light emitting diodes. Applied Physics Letters, 2010, 96, 043303.	3.3	47
42	Transfer-arm evaporator cell for rapid loading and deposition of organic thin films. Review of Scientific Instruments, 2009, 80, 125101.	1.3	12
43	Substrate dependent charge injection at the V2O5/organic interface. Applied Physics Letters, 2009, 95, .	3.3	14
44	Band alignment at the hybrid heterojunction between S-passivated III–V semiconductors and C60. Journal of Applied Physics, 2009, 106, 056105.	2.5	8
45	Energy-level alignment and charge injection at metal/C60/organic interfaces. Applied Physics Letters, 2009, 95, 043302.	3.3	25
46	The effect of UV ozone treatment on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). Applied Physics Letters, 2009, 95, 173302.	3.3	29