
James N Kochenderfer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4484655/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Critically Ill Patients Treated for Chimeric Antigen Receptor-Related Toxicity: A Multicenter Study*. Critical Care Medicine, 2022, 50, 81-92.	0.4	13
2	Acute and delayed cytopenias following CAR T-cell therapy: an investigation of risk factors and mechanisms. Leukemia and Lymphoma, 2022, 63, 1849-1860.	0.6	14
3	Yearlong COVID-19 Infection Reveals Within-Host Evolution of SARS-CoV-2 in a Patient With B-Cell Depletion. Journal of Infectious Diseases, 2022, 225, 1118-1123.	1.9	62
4	Durable remissions in two adult patients with Burkitt lymphoma following anti-CD19 CAR T-cell therapy: a single center experience. Leukemia and Lymphoma, 2022, 63, 2469-2473.	0.6	6
5	Design and Assessment of Novel Anti-CD30 Chimeric Antigen Receptors with Human Antigen-Recognition Domains. Human Gene Therapy, 2021, 32, 730-743.	1.4	9
6	Development of CAR T Cells Expressing a Suicide Gene Plus a Chimeric Antigen Receptor Targeting Signaling Lymphocytic-Activation Molecule F7. Molecular Therapy, 2021, 29, 702-717.	3.7	60
7	CAR T cell therapies for patients with multiple myeloma. Nature Reviews Clinical Oncology, 2021, 18, 71-84.	12.5	156
8	A comparison of chimeric antigen receptors containing CD28 versus 4-1BB costimulatory domains. Nature Reviews Clinical Oncology, 2021, 18, 715-727.	12.5	136
9	Infectious complications of CAR T-cell therapy across novel antigen targets in the first 30 days. Blood Advances, 2021, 5, 5312-5322.	2.5	24
10	Long-Term Follow-Up of Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy. Journal of Clinical Oncology, 2020, 38, 3805-3815.	0.8	129
11	Anti-BCMA chimeric antigen receptors with fully human heavy-chain-only antigen recognition domains. Nature Communications, 2020, 11, 283.	5.8	74
12	Safety and feasibility of anti-CD19 CAR T cells with fully human binding domains in patients with B-cell lymphoma. Nature Medicine, 2020, 26, 270-280.	15.2	182
13	The chimeric antigen receptor-intensive care unit (CAR-ICU) initiative: Surveying intensive care unit practices in the management of CAR T-cell associated toxicities. Journal of Critical Care, 2020, 58, 58-64.	1.0	31
14	Idecabtagene Vicleucel (ide-cel, bb2121), a BCMA-Directed CAR T Cell Therapy, in Patients with Relapsed and Refractory Multiple Myeloma: Updated Results from Phase 1 CRB-401 Study. Blood, 2020, 136, 26-27.	0.6	32
15	Effect of Cryopreservation on Autologous Chimeric Antigen Receptor T Cell Characteristics. Molecular Therapy, 2019, 27, 1275-1285.	3.7	65
16	Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. New England Journal of Medicine, 2019, 380, 1726-1737.	13.9	1,130
17	Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Science Translational Medicine, 2019, 11, .	5.8	178
18	Effects of starting cellular material composition on chimeric antigen receptor Tâ€cell expansion and characteristics. Transfusion, 2019, 59, 1755-1764.	0.8	26

2

#	Article	IF	CITATIONS
19	Recent advances in CAR T-cell toxicity: Mechanisms, manifestations and management. Blood Reviews, 2019, 34, 45-55.	2.8	570
20	T cells genetically engineered to overcome death signaling enhance adoptive cancer immunotherapy. Journal of Clinical Investigation, 2019, 129, 1551-1565.	3.9	108
21	T Cells Expressing an Anti-B-Cell Maturation Antigen (BCMA) Chimeric Antigen Receptor with a Fully-Human Heavy-Chain-Only Antigen Recognition Domain Induce Remissions in Patients with Relapsed Multiple Myeloma. Blood, 2019, 134, 3230-3230.	0.6	24
22	Infectious Complications Associated with CAR T-Cell Therapy. Blood, 2019, 134, 4449-4449.	0.6	6
23	CD19 Chimeric Antigen Receptor T Cells From Patients With Chronic Lymphocytic Leukemia Display an Elevated IFN-Î ³ Production Profile. Journal of Immunotherapy, 2018, 41, 73-83.	1.2	11
24	Chimeric antigen receptor T-cell therapies for lymphoma. Nature Reviews Clinical Oncology, 2018, 15, 31-46.	12.5	391
25	T Cells Genetically Modified to Express an Anti–B-Cell Maturation Antigen Chimeric Antigen Receptor Cause Remissions of Poor-Prognosis Relapsed Multiple Myeloma. Journal of Clinical Oncology, 2018, 36, 2267-2280.	0.8	570
26	Chimeric antigen receptor (CAR) T therapies for the treatment of hematologic malignancies: clinical perspective and significance. , 2018, 6, 137.		182
27	Screening Clinical Cell Products for Replication Competent Retrovirus: The National Gene Vector Biorepository Experience. Molecular Therapy - Methods and Clinical Development, 2018, 10, 371-378.	1.8	24
28	Quantification of B-cell maturation antigen, a target for novel chimeric antigen receptor T-cell therapy in Myeloma. Leukemia Research, 2018, 71, 106-111.	0.4	33
29	Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL. Blood, 2018, 132, 804-814.	0.6	246
30	Low Levels of Neurologic Toxicity with Retained Anti-Lymphoma Activity in a Phase I Clinical Trial of T Cells Expressing a Novel Anti-CD19 CAR. Blood, 2018, 132, 697-697.	0.6	7
31	Clinical anti-lymphoma activity and toxicity of T cells expressing a novel anti-CD19 chimeric antigen receptor with fully-human variable regions Journal of Clinical Oncology, 2018, 36, 3052-3052.	0.8	6
32	bb2121 anti-BCMA CAR T-cell therapy in patients with relapsed/refractory multiple myeloma: Updated results from a multicenter phase I study Journal of Clinical Oncology, 2018, 36, 8007-8007.	0.8	50
33	Early MRD negativity to predict deepening myeloma response in relapsed/refractory multiple myeloma (RRMM) patients treated with bb2121 anti-BCMA CAR T cells Journal of Clinical Oncology, 2018, 36, 8024-8024.	0.8	7
34	Association of high baseline ferritin with tocilizumab administration for CRS in relapsed/refractory multiple myeloma patients treated with bb2121 anti-BCMA CAR T cells Journal of Clinical Oncology, 2018, 36, e15062-e15062.	0.8	0
35	False-positive HIV nucleic acid amplification testing during CAR T-cell therapy. Diagnostic Microbiology and Infectious Disease, 2017, 88, 305-307.	0.8	18
36	Chimeric antigen receptor T-cell therapies for multiple myeloma. Blood, 2017, 130, 2594-2602.	0.6	180

#	Article	IF	CITATIONS
37	Long-Duration Complete Remissions of Diffuse Large B Cell Lymphoma after Anti-CD19 Chimeric Antigen Receptor TÂCell Therapy. Molecular Therapy, 2017, 25, 2245-2253.	3.7	227
38	Function of Novel Anti-CD19 Chimeric Antigen Receptors with Human Variable Regions Is Affected by Hinge and Transmembrane Domains. Molecular Therapy, 2017, 25, 2452-2465.	3.7	229
39	The impact of antibiotic usage on the efficacy of chemoimmunotherapy is contingent on the source of tumor-reactive T cells. Oncotarget, 2017, 8, 111931-111942.	0.8	52
40	Lymphoma Remissions Caused by Anti-CD19 Chimeric Antigen Receptor T Cells Are Associated With High Serum Interleukin-15 Levels. Journal of Clinical Oncology, 2017, 35, 1803-1813.	0.8	460
41	Durable Clinical Responses in Heavily Pretreated Patients with Relapsed/Refractory Multiple Myeloma: Updated Results from a Multicenter Study of bb2121 Anti-Bcma CAR T Cell Therapy. Blood, 2017, 130, 740-740.	0.6	67
42	First-in-human multicenter study of bb2121 anti-BCMA CAR T-cell therapy for relapsed/refractory multiple myeloma: Updated results Journal of Clinical Oncology, 2017, 35, 3010-3010.	0.8	76
43	Pigmented villonodular synovitis mimics metastases on fluorine 18 fluorodeoxyglucose position emission tomography-computed tomography. Quantitative Imaging in Medicine and Surgery, 2016, 6, 218-223.	1.1	9
44	A Rapid Cell Expansion Process for Production of Engineered Autologous CAR-T Cell Therapies. Human Gene Therapy Methods, 2016, 27, 209-218.	2.1	48
45	The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia. , 2016, 4, 90.		17
46	74. The Impact of Different Hinge and Transmembrane Components on the Function of a Novel Fully-Human Anti-CD19 Chimeric Antigen Receptor. Molecular Therapy, 2016, 24, S32-S33.	3.7	1
47	Toxicities of chimeric antigen receptor T cells: recognition and management. Blood, 2016, 127, 3321-3330.	0.6	1,019
48	Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood, 2016, 128, 519-528.	0.6	274
49	T cells expressing an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood, 2016, 128, 1688-1700.	0.6	626
50	Murine allogeneic CD19 CAR T cells harbor potent antileukemic activity but have the potential to mediate lethal GVHD. Blood, 2016, 127, 1361-1370.	0.6	87
51	Allogeneic T Cells That Express an Anti-CD19 Chimeric Antigen Receptor Induce Remissions of B-Cell Malignancies That Progress After Allogeneic Hematopoietic Stem-Cell Transplantation Without Causing Graft-Versus-Host Disease. Journal of Clinical Oncology, 2016, 34, 1112-1121.	0.8	513
52	Versatile strategy for controlling the specificity and activity of engineered T cells. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E450-8.	3.3	226
53	T Cells Expressing a Novel Fully-Human Anti-CD19 Chimeric Antigen Receptor Induce Remissions of Advanced Lymphoma in a First-in-Humans Clinical Trial. Blood, 2016, 128, 999-999.	0.6	24
54	Anti-CD19 chimeric antigen receptor T cells preceded by low-dose chemotherapy to induce remissions of advanced lymphoma Journal of Clinical Oncology, 2016, 34, LBA3010-LBA3010.	0.8	4

#	Article	IF	CITATIONS
55	Anti-CD19 chimeric antigen receptor T cells preceded by low-dose chemotherapy to induce remissions of advanced lymphoma Journal of Clinical Oncology, 2016, 34, LBA3010-LBA3010.	0.8	8
56	IL-12 conditioning improves retrovirally mediated transduction efficiency of CD8+ T cells. Cancer Gene Therapy, 2015, 22, 360-367.	2.2	7
57	T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet, The, 2015, 385, 517-528.	6.3	2,476
58	Chemotherapy-Refractory Diffuse Large B-Cell Lymphoma and Indolent B-Cell Malignancies Can Be Effectively Treated With Autologous T Cells Expressing an Anti-CD19 Chimeric Antigen Receptor. Journal of Clinical Oncology, 2015, 33, 540-549.	0.8	1,397
59	Remissions of Multiple Myeloma during a First-in-Humans Clinical Trial of T Cells Expressing an Anti-B-Cell Maturation Antigen Chimeric Antigen Receptor. Blood, 2015, 126, LBA-1-LBA-1.	0.6	20
60	Use of the piggyBac Transposon to Create Stable Packaging Cell Lines for the Production of Clinical-Grade Self-Inactivating γ-Retroviral Vectors. Human Gene Therapy Methods, 2014, 25, 253-260.	2.1	8
61	Rapid cell expansion (RACE) technology for production of engineered autologous T-cell therapy: Path toward manageable multicenter clinical trials in aggressive NHL with anti-CD19 CAR Journal of Clinical Oncology, 2014, 32, 3079-3079.	0.8	0
62	Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nature Reviews Clinical Oncology, 2013, 10, 267-276.	12.5	375
63	B-cell Maturation Antigen Is a Promising Target for Adoptive T-cell Therapy of Multiple Myeloma. Clinical Cancer Research, 2013, 19, 2048-2060.	3.2	521
64	Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation. Blood, 2013, 122, 4129-4139.	0.6	537
65	Donor-Derived Anti-CD19 Chimeric-Antigen-Receptor-Expressing T Cells Cause Regression Of Malignancy Persisting After Allogeneic Hematopoietic Stem Cell Transplantation. Blood, 2013, 122, 151-151.	0.6	7
66	Effective Treatment Of Chemotherapy-Refractory Diffuse Large B-Cell Lymphoma With Autologous T Cells Genetically-Engineered To Express An Anti-CD19 Chimeric Antigen Receptor. Blood, 2013, 122, 168-168.	0.6	6
67	Anti-CD19 Chimeric Antigen Receptor (CAR) T Cells Produce Complete Responses With Acceptable Toxicity But Without Chronic B-Cell Aplasia In Children With Relapsed Or Refractory Acute Lymphoblastic Leukemia (ALL) Even After Allogeneic Hematopoietic Stem Cell Transplantation (HSCT). Blood. 2013. 122. 68-68.	0.6	9
68	B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor–transduced T cells. Blood, 2012, 119, 2709-2720.	0.6	1,296
69	Autologous-Collected Donor-Derived CD19-Directed Chimeric Antigen Receptor (CD19-CAR) T Cells Induce a Complete Remission in Chemotherapy-Refractory Childhood Acute Lymphocytic Leukemia (ALL) Relapsing After Allogeneic Hematopoietic Stem Cell Transplantation (HSCT) Blood, 2012, 120, 2609-2609.	0.6	2
70	Rapid Production of Clinical-Grade Gammaretroviral Vectors in Expanded Surface Roller Bottles Using a "Modified―Step-Filtration Process for Clearance of Packaging Cells. Human Gene Therapy, 2011, 22, 107-115.	1.4	18
71	Chimeric Antigen Receptor–Modified T Cells in CLL. New England Journal of Medicine, 2011, 365, 1937-1939.	13.9	23
72	Personalized Cell Transfer Immunotherapy for B-Cell Malignancies and Solid Cancers. Molecular	3.7	9

Therapy, 2011, 19, 1928-1930.

5

#	Article	IF	CITATIONS
73	B-Cell Depletion, Remissions of Malignancy, and Cytokine-Associated Toxicity in a Clinical Trial of T Cells Genetically-Engineered to Express An Anti-CD19 Chimeric Antigen Receptor. Blood, 2011, 118, 167-167.	0.6	16
74	ALL Xenografts Reveal the Importance of Anti-CD19-Chimeric Antigen Receptor Cell Dose, Cell Persistence and Surprising Antitumor Activity of CD4+ Anti-CD19-CAR T Cells in Eradicating Pediatric Acute Lymphocytic Leukemia In Vivo. Blood, 2011, 118, 574-574.	0.6	0
75	Adoptive transfer of syngeneic T cells transduced with a chimeric antigen receptor that recognizes murine CD19 can eradicate lymphoma and normal B cells. Blood, 2010, 116, 3875-3886.	0.6	301
76	Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood, 2010, 116, 4099-4102.	0.6	1,152
77	Construction and Preclinical Evaluation of an Anti-CD19 Chimeric Antigen Receptor. Journal of Immunotherapy, 2009, 32, 689-702.	1.2	336
78	A Herceptin-Based Chimeric Antigen Receptor with Modified Signaling Domains Leads to Enhanced Survival of Transduced T Lymphocytes and Antitumor Activity. Journal of Immunology, 2009, 183, 5563-5574.	0.4	258
79	Construction and Pre-Clinical Evaluation of An Anti-CD19 Chimeric Antigen Receptor. Blood, 2008, 112, 4623-4623.	0.6	1
80	Vaccination regimens incorporating CpG-containing oligodeoxynucleotides and IL-2 generate antigen-specific antitumor immunity from T-cell populations undergoing homeostatic peripheral expansion after BMT. Blood, 2007, 110, 450-460.	0.6	22
81	A Comparison and Critical Analysis of Preclinical Anticancer Vaccination Strategies. Experimental Biology and Medicine, 2007, 232, 1130-1141.	1.1	32
82	Maximizing CD8+ T cell responses elicited by peptide vaccines containing CpG oligodeoxynucleotides. Clinical Immunology, 2007, 124, 119-130.	1.4	15
83	Synergism between CpG-Containing Oligodeoxynucleotides and IL-2 Causes Dramatic Enhancement of Vaccine-Elicited CD8+ T Cell Responses. Journal of Immunology, 2006, 177, 8860-8873.	0.4	23
84	A Vaccination Regimen Incorporating the Synergistic Combination of CpG-Containing Oligodeoxynucleotides and IL-2 Can Elicit CD8+ T Cell Responses That Effect Anti-Tumor Immunity from T Cell Repertoires Undergoing Reconstitution by Homeostatic Peripheral Expansion after BMT Blood, 2005, 106, 61-61.	0.6	0
85	Loss of T-lymphocyte clonal dominance in patients with myelodysplastic syndrome responsive to immunosuppression. Blood, 2002, 100, 3639-3645.	0.6	124
86	Leukemia vaccines. Current Oncology Reports, 2001, 3, 193-200.	1.8	8