Nicholas M Kanaan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4484311/publications.pdf

Version: 2024-02-01

80 papers

5,637 citations

87723 38 h-index 71 g-index

84 all docs 84 docs citations

84 times ranked 7415 citing authors

#	Article	IF	Citations
1	Central role for p62/SQSTM1 in the elimination of toxic tau species in a mouse model of tauopathy. Aging Cell, 2022, 21, .	3.0	17
2	TIA1 potentiates tau phase separation and promotes generation of toxic oligomeric tau. Proceedings of the National Academy of Sciences of the United States of America, $2021, 118, \ldots$	3. 3	72
3	Tau: A Signaling Hub Protein. Frontiers in Molecular Neuroscience, 2021, 14, 647054.	1.4	29
4	Neuronal and Glial Distribution of Tau Protein in the Adult Rat and Monkey. Frontiers in Molecular Neuroscience, 2021, 14, 607303.	1.4	25
5	Interaction of tau with HNRNPA2B1 and N6-methyladenosine RNA mediates the progression of tauopathy. Molecular Cell, 2021, 81, 4209-4227.e12.	4.5	84
6	EFhd2 brain interactome reveals its association with different cellular and molecular processes. Journal of Neurochemistry, 2021, , .	2.1	4
7	Frontotemporal Lobar Dementia Mutant Tau Impairs Axonal Transport through a Protein Phosphatase $1\hat{l}^3$ -Dependent Mechanism. Journal of Neuroscience, 2021, 41, 9431-9451.	1.7	8
8	Clioquinol Decreases Levels of Phosphorylated, Truncated, and Oligomerized Tau Protein. International Journal of Molecular Sciences, 2021, 22, 12063.	1.8	10
9	Rho-kinase ROCK inhibitors reduce oligomeric tau protein. Neurobiology of Aging, 2020, 89, 41-54.	1.5	43
10	Syk inhibitor reduces oligomeric tau associated with GSK3 \hat{l}^2 inactivation and autophagy activation. Alzheimer's and Dementia, 2020, 16, e042633.	0.4	4
11	Clioquinol reduces tau phosphorylation and oligomerization. Alzheimer's and Dementia, 2020, 16, e044356.	0.4	1
12	Liquid-liquid phase separation induces pathogenic tau conformations in vitro. Nature Communications, 2020, 11, 2809.	5.8	200
13	A human induced pluripotent stem cellâ€derived cortical neuron humanâ€onâ€a chip system to study Aβ 42 and tauâ€induced pathophysiological effects on longâ€term potentiation. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2020, 6, e12029.	1.8	7
14	Tau is not necessary for amyloid-β–induced synaptic and memory impairments. Journal of Clinical Investigation, 2020, 130, 4831-4844.	3.9	34
15	Time course and magnitude of alpha-synuclein inclusion formation and nigrostriatal degeneration in the rat model of synucleinopathy triggered by intrastriatal α-synuclein preformed fibrils. Neurobiology of Disease, 2019, 130, 104525.	2.1	67
16	EFhd2 Affects Tau Liquid–Liquid Phase Separation. Frontiers in Neuroscience, 2019, 13, 845.	1.4	28
17	Generation of Alpha-Synuclein Preformed Fibrils from Monomers and Use In Vivo. Journal of Visualized Experiments, 2019, , .	0.2	29
18	Pathogenic tau modifications occur in axons before the somatodendritic compartment in mossy fiber and Schaffer collateral pathways. Acta Neuropathologica Communications, 2019, 7, 29.	2.4	14

#	Article	IF	CITATIONS
19	O5â€04â€01: TRIM46 KNOCKDOWN CAUSES NEURONAL TAU REDISTRIBUTION AND INCREASES AXOSOMATIC DIFFUSION. Alzheimer's and Dementia, 2019, 15, .	TAU O.4	3
20	Activity of the poly(A) binding protein MSUT2 determines susceptibility to pathological tau in the mammalian brain. Science Translational Medicine, 2019, 11 , .	5.8	30
21	Tau and Axonal Transport Misregulation in Tauopathies. Advances in Experimental Medicine and Biology, 2019, 1184, 81-95.	0.8	46
22	Tau Oligomer Pathology in Nucleus Basalis Neurons During the Progression of Alzheimer Disease. Journal of Neuropathology and Experimental Neurology, 2018, 77, 246-259.	0.9	31
23	Lewy body-like alpha-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration. Journal of Neuroinflammation, 2018, 15, 129.	3.1	131
24	Tau Kinetics in Neurons and the Human Central Nervous System. Neuron, 2018, 97, 1284-1298.e7.	3.8	381
25	Tau Phosphorylation is Impacted by Rare AKAP9 Mutations Associated with Alzheimer Disease in African Americans. Journal of NeuroImmune Pharmacology, 2018, 13, 254-264.	2.1	19
26	Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nature Neuroscience, 2018, 21, 72-80.	7.1	189
27	P3â€181: THE INTERACTION BETWEEN TAU AND PROTEIN PHOSPHATASE 1 IS AFFECTED BY P301L MUTATION. Alzheimer's and Dementia, 2018, 14, P1136.	0.4	0
28	O3â€01â€03: TAU KINETICS IN NEURONS AND IN THE HUMAN CNS. Alzheimer's and Dementia, 2018, 14, P1008.	0.4	0
29	Homocysteine Increases Tau Phosphorylation, Truncation and Oligomerization. International Journal of Molecular Sciences, 2018, 19, 891.	1.8	44
30	Pretangle pathology within cholinergic nucleus basalis neurons coincides with neurotrophic and neurotransmitter receptor gene dysregulation during the progression of Alzheimer's disease. Neurobiology of Disease, 2018, 117, 125-136.	2.1	37
31	Exposure of the Amino Terminus of Tau Is a Pathological Event in Multiple Tauopathies. American Journal of Pathology, 2017, 187, 1222-1229.	1.9	24
32	Aging and Parkinson's disease: Different sides of the same coin?. Movement Disorders, 2017, 32, 983-990.	2.2	192
33	Rationally Engineered AAV Capsids Improve Transduction and Volumetric Spread in the CNS. Molecular Therapy - Nucleic Acids, 2017, 8, 184-197.	2.3	48
34	[P4–090]: THE SUBCELLULAR LOCALIZATION OF TAU AND THE PROPERTIES OF MUTANT P301L TAU IN PRIMARY NEURON CULTURES. Alzheimer's and Dementia, 2017, 13, P1293.	0.4	0
35	Production of recombinant tau oligomers in vitro. Methods in Cell Biology, 2017, 141, 45-64.	0.5	28
36	[O2–03–03]: TAU―NDUCED NEURODEGENERATION IS MEDIATED BY RNA BINDING PROTEINS. Alzheimer's Dementia, 2017, 13, P555.	and 0.4	0

#	Article	IF	Citations
37	Axonal Degeneration in Tauopathies: Disease Relevance and Underlying Mechanisms. Frontiers in Neuroscience, 2017, 11, 572.	1.4	82
38	Aging Does Not Affect Axon Initial Segment Structure and Somatic Localization of Tau Protein in Hippocampal Neurons of Fischer 344 Rats. ENeuro, 2017, 4, ENEURO.0043-17.2017.	0.9	9
39	Novel Non-phosphorylated Serine 9/21 GSK3β/α Antibodies: Expanding the Tools for Studying GSK3 Regulation. Frontiers in Molecular Neuroscience, 2016, 9, 123.	1.4	15
40	Calcium dysregulation contributes to neurodegeneration in FTLD patient iPSC-derived neurons. Scientific Reports, 2016, 6, 34904.	1.6	67
41	Protein homeostasis gene dysregulation in pretangle-bearing nucleus basalis neurons during the progression of Alzheimer's disease. Neurobiology of Aging, 2016, 42, 80-90.	1.5	25
42	Quantitative and semi-quantitative measurements of axonal degeneration in tissue and primary neuron cultures. Journal of Neuroscience Methods, 2016, 266, 32-41.	1.3	21
43	Analysis of isoform-specific tau aggregates suggests a common toxic mechanism involving similar pathological conformations and axonal transport inhibition. Neurobiology of Aging, 2016, 47, 113-126.	1.5	41
44	Pseudophosphorylation of tau at S422 enhances SDS-stable dimer formation and impairs both anterograde and retrograde fast axonal transport. Experimental Neurology, 2016, 283, 318-329.	2.0	28
45	Pioglitazone prevents tau oligomerization. Biochemical and Biophysical Research Communications, 2016, 478, 1035-1042.	1.0	26
46	Extracellular Tau Oligomers Produce An Immediate Impairment of LTP and Memory. Scientific Reports, 2016, 6, 19393.	1.6	212
47	Progression of tau pathology within cholinergic nucleus basalis neurons in chronic traumatic encephalopathy: A chronic effects of neurotrauma consortium study. Brain Injury, 2016, 30, 1399-1413.	0.6	21
48	Soluble pre-fibrillar tau and β-amyloid species emerge in early human Alzheimer's disease and track disease progression and cognitive decline. Acta Neuropathologica, 2016, 132, 875-895.	3.9	105
49	Pathological conformations involving the amino terminus of tau occur early in Alzheimer's disease and are differentially detected by monoclonal antibodies. Neurobiology of Disease, 2016, 94, 18-31.	2.1	68
50	Gene Therapy Models of Alzheimer's Disease and Other Dementias. Methods in Molecular Biology, 2016, 1382, 339-366.	0.4	26
51	Characterization of Early Pathological Tau Conformations and Phosphorylation in Chronic Traumatic Encephalopathy. Journal of Neuropathology and Experimental Neurology, 2016, 75, 19-34.	0.9	86
52	709. rAAV-Mediated Regulation of Striatal Nurr1 Expression Alters Development and Severity of Levodopa-Induced Dyskinesias in the 6-OHDA Rat Model of Parkinson's Disease. Molecular Therapy, 2015, 23, S282-S283.	3.7	6
53	P2-056: Differential oligomer formation and phosphatase-activating domain exposure in tau isoforms under reducing and oxidizing conditions in vitro. , 2015, 11 , P504-P504.		0
54	The Longitudinal Transcriptomic Response of the Substantia Nigra to Intrastriatal 6-Hydroxydopamine Reveals Significant Upregulation of Regeneration-Associated Genes. PLoS ONE, 2015, 10, e0127768.	1.1	18

#	Article	IF	Citations
55	Recombinant adenoassociated virus 2/5-mediated gene transfer is reduced in the aged rat midbrain. Neurobiology of Aging, 2015, 36, 1110-1120.	1.5	22
56	Intrastriatal injection of pre-formed mouse \hat{l} ±-synuclein fibrils into rats triggers \hat{l} ±-synuclein pathology and bilateral nigrostriatal degeneration. Neurobiology of Disease, 2015, 82, 185-199.	2.1	285
57	Tau Protein. , 2015, , 857-874.		2
58	A Method for Combining RNAscope In Situ Hybridization with Immunohistochemistry in Thick Free-Floating Brain Sections and Primary Neuronal Cultures. PLoS ONE, 2015, 10, e0120120.	1.1	88
59	Axonal degeneration in Alzheimer's disease: When signaling abnormalities meet the axonal transport system. Experimental Neurology, 2013, 246, 44-53.	2.0	171
60	Phosphorylation in the amino terminus of tau prevents inhibition of anterograde axonal transport. Neurobiology of Aging, 2012, 33, 826.e15-826.e30.	1.5	89
61	Loss of Functional Alpha-Synuclein: A Toxic Event in Parkinson's Disease?. Journal of Parkinson's Disease, 2012, 2, 249-267.	1.5	72
62	Peroxynitrite-Induced Nitrative and Oxidative Modifications Alter Tau Filament Formation. Biochemistry, 2011, 50, 1203-1212.	1.2	37
63	Tyrosine Nitration within the Proline-Rich Region of Tau in Alzheimer's Disease. American Journal of Pathology, 2011, 178, 2275-2285.	1.9	46
64	Progression of Tau Pathology in Cholinergic Basal Forebrain Neurons in Mild Cognitive Impairment and Alzheimer's Disease. American Journal of Pathology, 2011, 179, 2533-2550.	1.9	101
65	Heat Shock Protein 70 Prevents both Tau Aggregation and the Inhibitory Effects of Preexisting Tau Aggregates on Fast Axonal Transport. Biochemistry, 2011, 50, 10300-10310.	1.2	106
66	Ageing as a primary risk factor for Parkinson's disease: evidence from studies of non-human primates. Nature Reviews Neuroscience, 2011, 12, 359-366.	4.9	358
67	Pathogenic Forms of Tau Inhibit Kinesin-Dependent Axonal Transport through a Mechanism Involving Activation of Axonal Phosphotransferases. Journal of Neuroscience, 2011, 31, 9858-9868.	1.7	231
68	Characterization of Prefibrillar Tau Oligomers in Vitro and in Alzheimer Disease. Journal of Biological Chemistry, 2011, 286, 23063-23076.	1.6	281
69	Age-related changes in glial cells of dopamine midbrain subregions in rhesus monkeys. Neurobiology of Aging, 2010, 31, 937-952.	1.5	60
70	Axonal Transport Defects in Neurodegenerative Diseases. Journal of Neuroscience, 2009, 29, 12776-12786.	1.7	398
71	Age and regionâ€specific responses of microglia, but not astrocytes, suggest a role in selective vulnerability of dopamine neurons after 1â€methylâ€4â€phenylâ€1,2,3,6â€tetrahydropyridine exposure in monke Glia, 2008, 56, 1199-1214.	2y 2. 5	57
72	Ageâ€related changes in dopamine transporters and accumulation of 3â€nitrotyrosine in rhesus monkey midbrain dopamine neurons: Relevance in selective neuronal vulnerability to degeneration. European Journal of Neuroscience, 2008, 27, 3205-3215.	1.2	41

#	Article	IF	CITATIONS
73	Age-related accumulation of Marinesco bodies and lipofuscin in rhesus monkey midbrain dopamine neurons: Relevance to selective neuronal vulnerability. Journal of Comparative Neurology, 2007, 502, 683-700.	0.9	70
74	Exogenous erythropoietin provides neuroprotection of grafted dopamine neurons in a rodent model of Parkinson's disease. Brain Research, 2006, 1068, 221-229.	1.1	44
75	MDMA administration to pregnant Sprague–Dawley rats results in its passage to the fetal compartment. Neurotoxicology and Teratology, 2006, 28, 459-465.	1.2	36
76	Failure of proteasome inhibitor administration to provide a model of Parkinson's disease in rats and monkeys. Annals of Neurology, 2006, 60, 264-268.	2.8	128
77	Prenatal 3,4-methylenedioxymethamphetamine (ecstasy) alters exploratory behavior, reduces monoamine metabolism, and increases forebrain tyrosine hydroxylase fiber density of juvenile rats. Neurotoxicology and Teratology, 2003, 25, 509-517.	1.2	51
78	SPRR1A expression in experimental Osteoarthritis. Is there a role in pain?. Frontiers in Cellular Neuroscience, $0,13,.$	1.8	0
79	HNRNPA2B1 Mediates the Association of Oligomeric Tau with N $\langle \sup \rangle 6 \langle \sup \rangle$ -Methyladenosine and Neurodegeneration. SSRN Electronic Journal, 0, , .	0.4	0
80	A Complex Containing HNRNPA2B1 and N ⁶ -Methyladenosine Modified Transcripts Mediates Actions of Toxic Tau Oligomers. SSRN Electronic Journal, 0, , .	0.4	0