
Jose-Luis Andujar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4484137/publications.pdf Version: 2024-02-01

LOSE-LUIS ANDULAR

#	Article	IF	CITATIONS
1	Homogeneous Fe ₂ O ₃ coatings on carbon nanotube structures for supercapacitors. Dalton Transactions, 2020, 49, 4136-4145.	1.6	16
2	Super-Capacitive Performance of Manganese Dioxide/Graphene Nano-Walls Electrodes Deposited on Stainless Steel Current Collectors. Materials, 2019, 12, 483.	1.3	21
3	Laser-induced nanostructuration of vertically aligned carbon nanotubes coated with nickel oxide nanoparticles. Journal of Materials Science, 2017, 52, 4002-4015.	1.7	16
4	Laser-driven coating of vertically aligned carbon nanotubes with manganese oxide from metal organic precursors for energy storage. Nanotechnology, 2017, 28, 395405.	1.3	4
5	Effect of a Balanced Concentration of Hydrogen on Graphene CVD Growth. Journal of Nanomaterials, 2016, 2016, 1-10.	1.5	24
6	Ion energy distributions in bipolar pulsed-dc discharges of methane measured at the biased cathode. Plasma Sources Science and Technology, 2011, 20, 015006.	1.3	11
7	Surface structuring of diamond-like carbon films by colloidal lithography with silica sub-micron particles. Diamond and Related Materials, 2010, 19, 1124-1130.	1.8	10
8	Growth kinetics of nanometric dendrites in metal–carbon thin films. Acta Materialia, 2009, 57, 4948-4956.	3.8	10
9	Plasma parameters of pulsed-dc discharges in methane used to deposit diamondlike carbon films. Journal of Applied Physics, 2009, 106, 033302.	1.1	25
10	Low friction and protective diamond-like carbon coatings deposited by asymmetric bipolar pulsed plasma. Diamond and Related Materials, 2009, 18, 1035-1038.	1.8	11
11	Effects of environmental conditions on fluorinated diamond-like carbon tribology. Diamond and Related Materials, 2009, 18, 923-926.	1.8	28
12	Structural and optical properties of diamond like thin films deposited by asymmetric bipolar pulsed-DC reactive magnetron sputtering. Surface and Coatings Technology, 2008, 202, 2354-2357.	2.2	13
13	Fluorinated DLC deposited by pulsed-DC plasma for antisticking surface applications. Diamond and Related Materials, 2008, 17, 1728-1732.	1.8	22
14	Structural effects of nanocomposite films of amorphous carbon and metal deposited by pulsed-DC reactive magnetron sputtering. Diamond and Related Materials, 2007, 16, 1828-1834.	1.8	72
15	Diamond like carbon films deposited from graphite target by asymmetric bipolar pulsed-DC magnetron sputtering. Diamond and Related Materials, 2007, 16, 1286-1290.	1.8	28
16	Composition and morphology of metal-containing diamond-like carbon films obtained by reactive magnetron sputtering. Thin Solid Films, 2005, 482, 293-298.	0.8	27
17	Kinetic model of thin film growth by vapor deposition. European Physical Journal D, 2005, 35, 505-511.	0.6	7
18	Time-resolved electrical measurements of a pulsed-dc methane discharge used in diamond-like carbon films production. Thin Solid Films, 2005, 482, 172-176.	0.8	24

JOSE-LUIS ANDUJAR

#	Article	IF	CITATIONS
19	Spontaneous formation of nanometric multilayers of metal-carbon films by up-hill diffusion during growth. Applied Physics Letters, 2005, 87, 213117.	1.5	28
20	Characterization of diamond-like carbon thin films produced by pulsed-DC low pressure plasma monitored by a Langmuir probe in time-resolved mode. Diamond and Related Materials, 2005, 14, 1062-1066.	1.8	16
21	Structure of diamond-like carbon films containing transition metals deposited by reactive magnetron sputtering. Diamond and Related Materials, 2005, 14, 1103-1107.	1.8	63
22	Visible and infrared ellipsometry applied to the study of metal-containing diamond-like carbon coatings. Thin Solid Films, 2004, 455-456, 370-375.	0.8	7
23	Preparation of metal (W, Mo, Nb, Ti) containing a-C:H films by reactive magnetron sputtering. Surface and Coatings Technology, 2004, 177-178, 409-414.	2.2	67
24	Characterization of DLC films obtained at room temperature by pulsed-dc PECVD. Diamond and Related Materials, 2004, 13, 1494-1499.	1.8	50
25	Properties of a-C:H films deposited from a methane electron cyclotron wave resonant plasma. Current Applied Physics, 2003, 3, 433-437.	1.1	5
26	Comparative study of metal/amorphous-carbon multilayer structures produced by magnetron sputtering. Diamond and Related Materials, 2003, 12, 1008-1012.	1.8	21
27	Growth of hydrogenated amorphous carbon films in pulsed d.c. methane discharges. Diamond and Related Materials, 2003, 12, 98-104.	1.8	49
28	Effects of gas pressure and r.f. power on the growth and properties of magnetron sputter deposited amorphous carbon thin films. Diamond and Related Materials, 2002, 11, 1005-1009.	1.8	37
29	Properties of W/a-C nanometric multilayers produced by RF-pulsed magnetron sputtering. Diamond and Related Materials, 2002, 11, 1000-1004.	1.8	7
30	Hard coatings for mechanical applications. Vacuum, 2002, 64, 181-190.	1.6	16
31	Carbon nitride thin-films deposited from coupled r.fmagnetron sputtering and ion beam-assisted processes. Diamond and Related Materials, 2001, 10, 1175-1178.	1.8	9
32	Spectroscopic ellipsometric study of tetrahedral amorphous carbon films: optical properties and modelling. Diamond and Related Materials, 2001, 10, 1132-1136.	1.8	27
33	Study of the mechanical properties of tetrahedral amorphous carbon films by nanoindentation and nanowear measurements. Diamond and Related Materials, 2001, 10, 145-152.	1.8	61
34	Microstructural and mechanical properties of nanometric-multilayered a-CN/a-C/…/a-CN coatings deposited by rf-magnetron sputtering and nitrogen ion-beam bombardment. Diamond and Related Materials, 2001, 10, 952-955.	1.8	4
35	Preparation of tetrahedral amorphous carbon films by filtered cathodic vacuum arc deposition. Diamond and Related Materials, 2000, 9, 663-667.	1.8	154
36	Accurate electrical measurements for in situ diagnosis of RF discharges in plasma CVD processes. Vacuum, 1999, 53, 1-5.	1.6	13

JOSE-LUIS ANDUJAR

#	Article	IF	CITATIONS
37	Nanoparticles of Si–C–N from low temperature RF plasmas: selective size, composition and structure. Applied Surface Science, 1999, 144-145, 702-707.	3.1	12
38	Application of infrared Fourier transform phase-modulated ellipsometry to the characterization of silicon-based amorphous thin films. Thin Solid Films, 1998, 313-314, 671-675.	0.8	2
39	Optical emission spectroscopy of rf glow discharges of methane–silane mixtures. Thin Solid Films, 1998, 317, 120-123.	0.8	11
40	Nanopowder of silicon nitride produced in radio frequency modulated glow discharges from SiH4 and NH3. Surface and Coatings Technology, 1998, 100-101, 55-58.	2.2	12
41	Plasma-enhanced chemical vapor deposition of boron nitride thin films from B2H6–H2–NH3 and B2H6–N2 gas mixtures. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1998, 16, 578-586.	0.9	28
42	Growth of diamond films on boron nitride thin films by bias-assisted hot filament chemical vapor deposition. Applied Physics Letters, 1997, 70, 1682-1684.	1.5	11
43	In situ fast ellipsometric analysis of repetitive surface phenomena. Review of Scientific Instruments, 1997, 68, 3135-3139.	0.6	4
44	Optical study of boron nitride thin films prepared by plasma-enhanced chemical vapor deposition. Diamond and Related Materials, 1997, 6, 1550-1554.	1.8	12
45	Effects of thermal and laser annealing on silicon carbide nanopowder produced in radio frequency glow discharge. Diamond and Related Materials, 1997, 6, 1559-1563.	1.8	8
46	Microstructure of highly oriented, hexagonal, boron nitride thin films grown on crystalline silicon by radio frequency plasmaâ€assisted chemical vapor deposition. Journal of Applied Physics, 1996, 80, 6553-6555.	1.1	14
47	Optical and structural characterization of boron nitride thin films. Diamond and Related Materials, 1995, 4, 657-660.	1.8	11
48	Optical and structural characterization of hydrogenated amorphous silicon carbide thin films prepared by r.f. plasma chemical vapour deposition. Diamond and Related Materials, 1995, 4, 1205-1209.	1.8	13
49	Spectral ellipsometric and compositional characterization of hydrogenated amorphous silicon carbide thin films. Diamond and Related Materials, 1995, 4, 702-705.	1.8	10
50	Effects of plasma processing on the microstructural properties of silicon powders. Plasma Sources Science and Technology, 1994, 3, 348-354.	1.3	33
51	Diffusion and effusion analysis of hydrogen in undoped hydrogenated amorphous silicon thin films. Applied Surface Science, 1993, 70-71, 680-685.	3.1	3
52	Optical, vibrational and compositional study of amorphous silicon oxynitride thin films grown by an RF plasma using N2O + SiH4 gas mixtures. Applied Surface Science, 1993, 70-71, 695-700.	3.1	9
53	Effect of hydrogen dilution on the growth of hydrogenated amorphous silicon studied by in-situ phase-modulated ellipsometry. Thin Solid Films, 1993, 228, 109-112.	0.8	8
54	In situ real-time ellipsometric study of the growth of r.f. plasma deposited amorphous hydrogenated silicon oxynitride thin films. Thin Solid Films, 1993, 228, 137-140.	0.8	3

JOSE-LUIS ANDUJAR

#	Article	IF	CITATIONS
55	Effects of r.f. power on optical and electrical properties of plasma-deposited hydrogenated amorphous silicon thin films. Sensors and Actuators A: Physical, 1993, 37-38, 733-736.	2.0	2
56	Plasma-deposited silicon nitride films with low hydrogen content for amorphous silicon thin-film transistors application. Sensors and Actuators A: Physical, 1993, 37-38, 333-336.	2.0	10
57	Study of thin films of transparent electronic materials by phase-modulated spectroellipsometry. Thin Solid Films, 1993, 233, 223-226.	0.8	1
58	Error minimization method for spectroscopic and phase-modulated ellipsometric measurements on highly transparent thin films. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1993, 10, 713.	0.8	11
59	Properties of amorphous silicon thin films grown in square wave modulated silane rf discharges. Journal of Applied Physics, 1992, 71, 1546-1548.	1.1	15
60	Optical and electrical properties of a-SixNy:H films prepared by rf plasma using N2+SiH4 gas mixtures. Journal of Non-Crystalline Solids, 1991, 137-138, 895-898.	1.5	7
61	Surface roughness evolution in the growth of a-Si: H thin films studied by ellipsometry. Surface Science, 1991, 251-252, 191-194.	0.8	3
62	Ellipsometric study ofa‧i:H thin films deposited by square wave modulated rf glow discharge. Journal of Applied Physics, 1991, 69, 632-638.	1.1	39
63	Effects of deposition temperature on properties of r.f. glow discharge amorphous silicon thin films. Thin Solid Films, 1991, 205, 140-145.	0.8	7
64	Influence of pressure and radio frequency power on deposition rate and structural properties of hydrogenated amorphous silicon thin films prepared by plasma deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1991, 9, 2216-2221.	0.9	52
65	Effect of substrate temperature on deposition rate of rf plasmaâ€deposited hydrogenated amorphous silicon thin films. Journal of Applied Physics, 1991, 69, 3757-3759.	1.1	13
66	Insituspectroellipsometric study of the nucleation and growth of amorphous silicon. Journal of Applied Physics, 1990, 68, 2752-2759.	1.1	68
67	In situ optical characterizations for rf plasma deposited a-Si: H thin films. Vacuum, 1989, 39, 785-787.	1.6	30
68	Real time controlled rf reactor for deposition of a-Si:H thin films. Vacuum, 1989, 39, 795-798.	1.6	34
69	Glow discharge deposited a-Si:H,Al thin films. Solar Energy Materials and Solar Cells, 1987, 15, 167-173.	0.4	3