Alisson Dal Lago

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4484055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamic Mechanisms Associated With Highâ€Energy Electron Flux Dropout in the Earth's Outer Radiation Belt Under the Influence of a Coronal Mass Ejection Sheath Region. Journal of Geophysical Research: Space Physics, 2021, 126, .	0.8	9
2	A Peculiar ICME Event in August 2018 Observed With the Global Muon Detector Network. Space Weather, 2021, 19, e2020SW002531.	1.3	7
3	Highâ€Energy Electron Flux Enhancement Pattern in the Outer Radiation Belt in Response to the Alfvénic Fluctuations Within Highâ€Speed Solar Wind Stream: A Statistical Analysis. Journal of Geophysical Research: Space Physics, 2021, 126, e2021JA029363.	0.8	10
4	Electromagnetic Ion Cyclotron Waves Pattern Recognition Based on a Deep Learning Technique: Bag-of-Features Algorithm Applied to Spectrograms. Astrophysical Journal, Supplement Series, 2020, 249, 13.	3.0	1
5	Predicting the Time of Arrival of Coronal Mass Ejections at Earth From Heliospheric Imaging Observations. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA027885.	0.8	5
6	Analysis of Cosmic Rays' Atmospheric Effects and Their Relationships to Cutoff Rigidity and Zenith Angle Using Global Muon Detector Network Data. Journal of Geophysical Research: Space Physics, 2019, 124, 9791-9813.	0.8	8
7	Contribution of ULF Wave Activity to the Global Recovery of the Outer Radiation Belt During the Passage of a High‧peed Solar Wind Stream Observed in September 2014. Journal of Geophysical Research: Space Physics, 2019, 124, 1660-1678.	0.8	14
8	On the Contribution of EMIC Waves to the Reconfiguration of the Relativistic Electron Butterfly Pitch Angle Distribution Shape on 2014 September 12—A Case Study*. Astrophysical Journal, 2019, 872, 36.	1.6	8
9	A Global Magnetohydrodynamic Simulation Study of Ultra-low-frequency Wave Activity in the Inner Magnetosphere: Corotating Interaction Region + Alfvénic Fluctuations. Astrophysical Journal, 2019, 886, 59.	1.6	5
10	Cosmic-Ray Short Burst Observed with the Global Muon Detector Network (GMDN) on 2015 June 22. Astrophysical Journal, 2018, 862, 170.	1.6	10
11	How Reliable Are the Properties of Coronal Mass Ejections Measured from a Single Viewpoint?. Astrophysical Journal, 2018, 863, 57.	1.6	27
12	Multi-viewpoint Coronal Mass Ejection Catalog Based on STEREO COR2 Observations. Astrophysical Journal, 2017, 838, 141.	1.6	77
13	Pseudo-automatic Determination of Coronal Mass Ejections' Kinematics in 3D. Astrophysical Journal, 2017, 842, 134.	1.6	9
14	The Role of Solar Wind Structures in the Generation of ULF Waves in the Inner Magnetosphere. Solar Physics, 2017, 292, 1.	1.0	7
15	Effects of ICMEs on High Energetic Particles as Observed by the Global Muon Detector Network (GMDN). Proceedings of the International Astronomical Union, 2017, 13, 69-74.	0.0	1
16	A neural network approach for identifying particle pitch angle distributions in Van Allen Probes data. Space Weather, 2016, 14, 275-284.	1.3	5
17	Outer radiation belt dropout dynamics following the arrival of two interplanetary coronal mass ejections. Geophysical Research Letters, 2016, 43, 978-987.	1.5	26
18	AVERAGE SPATIAL DISTRIBUTION OF COSMIC RAYS BEHIND THE INTERPLANETARY SHOCKâ€"GLOBAL MUON DETECTOR NETWORK OBSERVATIONS. Astrophysical Journal, 2016, 825, 100.	1.6	6

ALISSON DAL LAGO

#	Article	IF	CITATIONS
19	THE TEMPERATURE EFFECT IN SECONDARY COSMIC RAYS (MUONS) OBSERVED AT THE GROUND: ANALYSIS OF THE GLOBAL MUON DETECTOR NETWORK DATA. Astrophysical Journal, 2016, 830, 88.	1.6	30
20	Deriving the solar activity cycle modulation on cosmic ray intensity observed by Nagoya muon detector from October 1970 until December 2012. Proceedings of the International Astronomical Union, 2016, 12, 130-133.	0.0	2
21	Comparison of geophysical patterns in the southern hemisphere mid-latitude region. Advances in Space Research, 2016, 58, 2090-2103.	1.2	3
22	The spatial density gradient of galactic cosmic rays and its solar cycle variation observed with the Global Muon Detector Network. Earth, Planets and Space, 2014, 66, .	0.9	8
23	Global Muon Detector Network Used for Space Weather Applications. Space Science Reviews, 2014, 182, 1-18.	3.7	22
24	Pseudo-automatic characterization of the morphological and kinematical properties of coronal mass ejections using a texture-based technique. Advances in Space Research, 2013, 51, 1949-1965.	1.2	7
25	Very intense geomagnetic storms and their relation to interplanetary and solar active phenomena. Advances in Space Research, 2013, 51, 1842-1856.	1.2	7
26	CME dynamics using coronagraph and interplanetary ejecta data. Advances in Space Research, 2013, 51, 1942-1948.	1.2	2
27	Temperature effect correction for the cosmic ray muon data observed at the Brazilian Southern Space Observatory in São Martinho da Serra. Journal of Physics: Conference Series, 2013, 409, 012138.	0.3	7
28	A proposal of a counting and recording system for cosmic ray muon detectors. Journal of Physics: Conference Series, 2013, 409, 012137.	0.3	0
29	Near 13.5-day periodicity in Muon Detector data during late 2001 and early 2002. Advances in Space Research, 2012, 49, 1615-1622.	1.2	7
30	Geomagnetic storm's precursors observed from 2001 to 2007 with the Global Muon Detector Network (GMDN). Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	17
31	CORONAL MASS EJECTION DYNAMICS REGARDING RADIAL AND EXPANSION SPEEDS. Astrophysical Journal, 2011, 738, 107.	1.6	3
32	Space Weather and the Global Muon Detector Network $\hat{a} \in \mathbb{C}$ GMDN. , 2011, , .		0
33	Interplanetary Origin of Intense, Superintense and Extreme Geomagnetic Storms. Space Science Reviews, 2011, 158, 69-89.	3.7	87
34	Multi-spacecraft observed magnetic clouds as seen by Helios mission. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1361-1371.	0.6	2
35	Interplanetary shock wave extent in the inner heliosphere as observed by multiple spacecraft. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1281-1292.	0.6	18
36	PRECURSORS OF THE FORBUSH DECREASE ON 2006 DECEMBER 14 OBSERVED WITH THE GLOBAL MUON DETECTOR NETWORK (GMDN). Astrophysical Journal, 2010, 715, 1239-1247.	1.6	23

ALISSON DAL LAGO

#	Article	IF	CITATIONS
37	Determination of interplanetary coronal mass ejection geometry and orientation from groundâ€based observations of galactic cosmic rays. Journal of Geophysical Research, 2009, 114, .	3.3	41
38	On Cosmic Rays, IP Structures and Geospace Consequences During WHI. Proceedings of the International Astronomical Union, 2009, 5, 488-490.	0.0	0
39	Drift Effects and the Cosmic Ray Density Gradient in a Solar Rotation Period: First Observation with the Global Muon Detector Network (GMDN). Astrophysical Journal, 2008, 681, 693-707.	1.6	40
40	Multi-spacecraft observations to study the shock extension in the inner heliosphere. Proceedings of the International Astronomical Union, 2008, 4, 481-487.	0.0	0
41	Muon and neutron observations in connection with the corotating interaction regions. Advances in Space Research, 2007, 40, 348-352.	1.2	4
42	Energy balance during intense and super-intense magnetic storms using an Akasofu ε parameter corrected by the solar wind dynamic pressure. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 1851-1863.	0.6	15
43	The 17–22 October (1999) solar-interplanetary-geomagnetic event: Very intense geomagnetic storm associated with a pressure balance between interplanetary coronal mass ejection and a high-speed stream. Journal of Geophysical Research, 2006, 111, .	3.3	27
44	Interplanetary shocks and sudden impulses during solar maximum (2000) and solar minimum (1995–1996). Advances in Space Research, 2005, 36, 2313-2317.	1.2	9
45	Interplanetary shocks and geomagnetic activity during solar maximum (2000) and solar minimum (1995–1996). Advances in Space Research, 2005, 36, 2318-2322.	1.2	2
46	Introduction to space weather. Advances in Space Research, 2005, 35, 855-865.	1.2	83
47	Reply to comments on the paper "Long term correlation between solar and geomagnetic activity― Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67, 1375-1376.	0.6	0
48	The association of coronal mass ejections with their effects near the Earth. Annales Geophysicae, 2005, 23, 1033-1059.	0.6	328
49	Great geomagnetic storms in the rise and maximum of solar cycle 23. Brazilian Journal of Physics, 2004, 34, 1542-1546.	0.7	17
50	Comparison Between Halo cme Expansion Speeds Observed on the Sun, the Related Shock Transit Speeds to Earth and Corresponding Ejecta Speeds at 1Âau. Solar Physics, 2004, 222, 323-328.	1.0	28
51	Prediction of peak-Dst from halo CME/magnetic cloud-speed observations. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66, 161-165.	0.6	36
52	Long-term correlation between solar and geomagnetic activity. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66, 1019-1025.	0.6	73
53	The solar origins of the Sun-Earth connection events on April 1999 and February 2000. Brazilian Journal of Physics, 2004, 34, 1745-1747.	0.7	2
54	Multi-Scale Analysis of the Geomagnetic Symmetric Index (sym). Solar Physics, 2003, 217, 383-394.	1.0	2

ALISSON DAL LAGO

#	Article	IF	CITATIONS
55	Relation between the radial speed and theexpansion speed of coronal mass ejections. Advances in Space Research, 2003, 32, 2637-2640.	1.2	46
56	Continuous tracking of cmes using MICA, andLASCO C2 and C3 coronagraphs. Advances in Space Research, 2003, 32, 2625-2630.	1.2	3
57	Coronal mass ejection speeds measured in the solar corona using LASCO C2 and C3 images. Advances in Space Research, 2003, 32, 2619-2624.	1.2	6
58	Interplanetary shock parameters during solar activity maximum (2000) and minimum (1995-1996). Brazilian Journal of Physics, 2003, 33, 115-122.	0.7	35
59	Stream-interacting magnetic clouds causing very intense geomagnetic storms. Advances in Space Research, 2002, 30, 2225-2229.	1.2	6
60	A study of the geoeffectiveness of southward interplanetary magnetic field structures. Advances in Space Research, 2002, 30, 2335-2338.	1.2	3
61	Compression of magnetic clouds in interplanetary space and increase in their geoeffectiveness. Journal of Atmospheric and Solar-Terrestrial Physics, 2001, 63, 451-455.	0.6	28
62	A study of magnetic storms development in two or more steps and its association with the polarity of magnetic clouds. Journal of Atmospheric and Solar-Terrestrial Physics, 2001, 63, 457-461.	0.6	23
63	Solar and interplanetary causes of very intense geomagnetic storms. Journal of Atmospheric and Solar-Terrestrial Physics, 2001, 63, 403-412.	0.6	48
64	Magnetic cloud field intensities and solar wind velocities. Geophysical Research Letters, 1998, 25, 963-966.	1.5	84