
Rogelio Cuevas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4483872/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The role of methoxy species on the transesterification reaction of castor oil on Ni-Mg-Al calcined hydrotalcites. Catalysis Today, 2022, 392-393, 31-40.	4.4	3
2	On the contribution of the cobalt sulfide phase to the global activity of industrial-type CoMo/Al2O3 catalysts in the HDS of DBT. Catalysis Today, 2022, 394-396, 41-49.	4.4	4
3	Bio-oil production by catalytic solvent liquefaction from a wild microalgae consortium. Biomass Conversion and Biorefinery, 2021, 11, 2627-2639.	4.6	8
4	Catalytic hydrocracking of a Mexican heavy oil on a MoS2/al2o3catalyst: II. Study of the transformation of isolated aromatics fraction obtained from SARA analysis. Fuel, 2021, 288, 119541.	6.4	8
5	Effect of the preparation method on particle size and reaction selectivity on naphthalene hydrogenation over Ni/H-MOR catalysts. Catalysis Today, 2021, 360, 63-71.	4.4	16
6	Producción de combustibles renovables. Mundo Nano Revista Interdisciplinaria En Nanociencia Y NanotecnologÃa, 2021, 16, 1e-50e.	0.1	0
7	Catalytic hydrothermal liquefaction of microalgae cultivated in wastewater: Influence of ozone-air flotation on products, energy balance and carbon footprint. Energy Conversion and Management, 2021, 249, 114806.	9.2	14
8	Catalytic hydrocracking of a Mexican heavy oil on a MoS2/Al2O3 catalyst: I. Study of the transformation of isolated saturates fraction obtained from SARA analysis. Catalysis Today, 2020, 353, 153-162.	4.4	6
9	Thiophene HDS on La-Modified CoMo/Al2O3 Sulfided Catalysts. Effect of Rare-Earth Content. Topics in Catalysis, 2020, 63, 529-545.	2.8	10
10	Obtención y análisis de expresiones de cinética quÃmica. Mundo Nano Revista Interdisciplinaria En Nanociencia Y NanotecnologÃa, 2020, 14, 1e-25e.	0.1	0
11	Obtención y análisis de expresiones de cinética quÃmica. Mundo Nano Revista Interdisciplinaria En Nanociencia Y NanotecnologÃa, 2020, 14, 1e-23e.	0.1	0
12	Bio-crude oil production using catalytic hydrothermal liquefaction (HTL) from native microalgae harvested by ozone-flotation. Fuel, 2019, 241, 255-263.	6.4	46
13	Catalytic Materials for Hydrodesulfurization Processes, Experimental Strategies to Improve Their Performance. , 2019, , 61-96.		0
14	Analysis of the thermal hydrocracking of heavy fuel oil. Petroleum Science and Technology, 2018, 36, 507-513.	1.5	10
15	Influence of the support on the catalytic performance of Mo, CoMo, and NiMo catalysts supported on Al2O3 and TiO2 during the HDS of thiophene, dibenzothiophene, or 4,6-dimethyldibenzothiophene. Catalysis Today, 2016, 259, 140-149.	4.4	44
16	Simultaneous naphthalene and thiophene hydrogenation over Ni(X)–Pt/HMOR catalysts. Catalysis Today, 2015, 250, 12-20.	4.4	9
17	Hydrocracking of Maya crude oil in a slurry-phase batch reactor. II. Effect of catalyst load. Fuel, 2014, 130, 263-272.	6.4	53
18	Hydrocracking of Maya crude oil in a slurry-phase reactor. I. Effect of reaction temperature. Catalysis Today, 2014, 220-222, 295-300.	4.4	51

ROGELIO CUEVAS

#	Article	IF	CITATIONS
19	Effect of phosphorus on Mo/Al2O3 catalysts for Maya crude improvement. Catalysis Today, 2014, 220-222, 310-317.	4.4	6
20	Heavy oil upgrading at moderate pressure using dispersed catalysts: Effects of temperature, pressure and catalytic precursor. Fuel, 2012, 100, 186-192.	6.4	83
21	Prediction of Sulfur Content, API Gravity, and Viscosity Using a Continuous Mixture Kinetic Model for Maya Crude Oil Hydrocracking in a Slurry-Phase Reactor. Energy & Fuels, 2011, 25, 3605-3614.	5.1	9
22	Preparation and characterization of Pt/HMFI–SBA-15 hybrid catalyst for tetralin transformation. Catalysis Today, 2009, 148, 49-54.	4.4	16
23	Kinetic Study of the HDS of 4,6-DMDBT over NiMo/Al ₂ O ₃ â^'SiO ₂ (<i>x</i>) Catalysts. Industrial & Engineering Chemistry Research, 2009, 48, 1178-1185.	3.7	15
24	Characterization and Hydrogenation Activity of Ni/Si(Al)- MCM-41 Catalysts Prepared by Depositionâ^'Precipitation. Industrial & Engineering Chemistry Research, 2009, 48, 1154-1162.	3.7	39
25	Transformation of thiophene, benzothiophene and dibenzothiophene over Pt/HMFI, Pt/HMOR and Pt/HFAU: Effect of reactant molecular dimensions and zeolite pore diameter over catalyst activity. Catalysis Today, 2008, 130, 320-326.	4.4	36
26	Synthesis, characterization and evaluation of NiMo/SiO2–Al2O3 catalysts prepared by the pH-swing method. Catalysis Today, 2008, 130, 337-344.	4.4	9
27	Oxidative desulfurization of synthetic diesel using supported catalysts. Catalysis Today, 2008, 133-135, 244-254.	4.4	103
28	Analysis of the HDS of 4,6-DMDBT in the presence of naphthalene and carbazole over NiMo/Al2O3–SiO2(x) catalysts. Catalysis Today, 2008, 133-135, 267-276.	4.4	35
29	Preparation of highly active NiMo/Al-SBA15 (x) HDS catalysts: Preservation of the support hexagonal porous arrangement. Catalysis Today, 2008, 133-135, 261-266.	4.4	11
30	A study on sulfur reduction in FCC gasoline using Zn–Mg–Al spinels. Catalysis Today, 2005, 107-108, 713-718.	4.4	18
31	Hydrodesulfurization of 4,6-DMDBT on NiMo and CoMo catalysts supported on B2O3-Al2O3. Catalysis Today, 2005, 107-108, 551-558.	4.4	42
32	TPR-S analysis of the catalytic behavior of Ru/Al2O3 catalysts in industrial conditions. Catalysis Today, 2005, 107-108, 913-919.	4.4	6
33	Hydrodemetallation (HDM) kinetics of Ni-TPP over Mo/Al2O3-TiO2 catalyst. Catalysis Today, 2005, 107-108, 545-550.	4.4	21
34	Hydrodesulfurization of gasoils over NiMo/Al2O3–H(or Ni)NaY zeolite hybrid catalysts. Catalysis Today, 2004, 98, 201-206.	4.4	17
35	The role of titania in supported Mo, CoMo, NiMo, and NiW hydrodesulfurization catalysts: analysis of past and new evidences. Catalysis Today, 2004, 98, 19-30.	4.4	135
36	Fluoride modification of Mo/Al2O3 catalysts. Journal of Fluorine Chemistry, 2003, 122, 151-158.	1.7	15

ROGELIO CUEVAS

#	Article	IF	CITATIONS
37	Characterization of Al2O3-ZrO2 mixed oxide catalytic supports prepared by the sol-gel method. Microporous and Mesoporous Materials, 1998, 20, 293-306.	4.4	87
38	Effect of boron addition on the activity and selectivity of hydrotreating CoMo/Al2O3 catalysts. Applied Catalysis A: General, 1995, 132, 317-334.	4.3	74
39	Promoting effect of fluorine on cobalt—molybdenum/ titania hydrodesulfurization catalysts. Applied Catalysis, 1991, 71, 351-361.	0.8	35
40	Effect of fluorine on hydrogenation of cyclohexene on sulfided Ni (or Co)Mo/Al2O3 catalysts. Applied Catalysis, 1990, 57, 223-240.	0.8	56