
Sandra Pina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4483814/publications.pdf Version: 2024-02-01

SANIDDA DINIA

#	Article	IF	CITATIONS
1	Natural polymeric biomaterials for tissue engineering. , 2022, , 75-110.		Ο
2	Biocomposites and Bioceramics in Tissue Engineering: Beyond the Next Decade. Springer Series in Biomaterials Science and Engineering, 2022, , 319-350.	0.7	3
3	Bioinspired Silk Fibroin-Based Composite Grafts as Bone Tunnel Fillers for Anterior Cruciate Ligament Reconstruction. Pharmaceutics, 2022, 14, 697.	2.0	9
4	Osteogenic lithium-doped brushite cements for bone regeneration. Bioactive Materials, 2022, 16, 403-417.	8.6	13
5	Horseradish Peroxidaseâ€Crosslinked Calciumâ€Containing Silk Fibroin Hydrogels as Artificial Matrices for Bone Cancer Research. Macromolecular Bioscience, 2021, 21, e2000425.	2.1	9
6	Ion-doped Brushite Cements for Bone Regeneration. Acta Biomaterialia, 2021, 123, 51-71.	4.1	58
7	Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering. Advanced Functional Materials, 2021, 31, 2010609.	7.8	370
8	Porous aligned ZnSr-doped β-TCP/silk fibroin scaffolds using ice-templating method for bone tissue engineering applications. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1966-1982.	1.9	8
9	Hierarchical HRP-Crosslinked Silk Fibroin/ZnSr-TCP Scaffolds for Osteochondral Tissue Regeneration: Assessment of the Mechanical and Antibacterial Properties. Frontiers in Materials, 2020, 7, .	1.2	12
10	Indirect printing of hierarchical patient-specific scaffolds for meniscus tissue engineering. Bio-Design and Manufacturing, 2019, 2, 225-241.	3.9	8
11	Lactoferrin-Hydroxyapatite Containing Spongy-Like Hydrogels for Bone Tissue Engineering. Materials, 2019, 12, 2074.	1.3	24
12	Tissue engineering scaffolds. , 2019, , 165-185.		6
13	Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials, 2019, 12, 1824.	1.3	309
14	Collagen-based bioinks for hard tissue engineering applications: a comprehensive review. Journal of Materials Science: Materials in Medicine, 2019, 30, 32.	1.7	150
15	Enzymatically Cross-Linked Silk Fibroin-Based Hierarchical Scaffolds for Osteochondral Regeneration. ACS Applied Materials & Interfaces, 2019, 11, 3781-3799.	4.0	83
16	Bioceramics for Osteochondral Tissue Engineering and Regeneration. Advances in Experimental Medicine and Biology, 2018, 1058, 53-75.	0.8	45
17	Silk Fibroin-Based Hydrogels and Scaffolds for Osteochondral Repair and Regeneration. Advances in Experimental Medicine and Biology, 2018, 1058, 305-325.	0.8	27
18	Clinical Trials and Management of Osteochondral Lesions. Advances in Experimental Medicine and Biology, 2018, 1058, 391-413.	0.8	10

Sandra Pina

#	Article	IF	CITATIONS
19	Commercial Products for Osteochondral Tissue Repair and Regeneration. Advances in Experimental Medicine and Biology, 2018, 1058, 415-428.	0.8	13
20	Rapidly responsive silk fibroin hydrogels as an artificial matrix for the programmed tumor cells death. PLoS ONE, 2018, 13, e0194441.	1.1	65
21	Ceramic biomaterials for tissue engineering. , 2018, , 95-116.		6
22	In Vitro Mimetic Models for the Bone-Cartilage Interface Regeneration. Advances in Experimental Medicine and Biology, 2018, 1059, 373-394.	0.8	10
23	Fundamentals on Osteochondral Tissue Engineering. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 129-146.	0.7	2
24	Pre-clinical and Clinical Management of Osteochondral Lesions. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2017, , 147-161.	0.7	5
25	2.11 Polymers of Biological Origin â~†. , 2017, , 228-252.		33
26	Biofunctional Ionic-Doped Calcium Phosphates: Silk Fibroin Composites for Bone Tissue Engineering Scaffolding. Cells Tissues Organs, 2017, 204, 150-163.	1.3	37
27	Biomimetic Strategies to Engineer Mineralized Human Tissues. , 2016, , 503-519.		3
28	Cartilage and Bone Regenerationâ \in "How Close Are We to Bedside?. , 2016, , 89-106.		5
29	Influence of Mg-doping, calcium pyrophosphate impurities and cooling rate on the allotropic α ↔ β-tricalcium phosphate phase transformations. Journal of the European Ceramic Society, 2016, 36, 817-827.	2.8	59
30	Naturalâ€Based Nanocomposites for Bone Tissue Engineering and Regenerative Medicine: A Review. Advanced Materials, 2015, 27, 1143-1169.	11.1	743
31	Effects of Mn-doping on the structure and biological properties of β-tricalcium phosphate. Journal of Inorganic Biochemistry, 2014, 136, 57-66.	1.5	75
32	The bioactivity mechanism of magnetron sputtered bioglass thin films. Applied Surface Science, 2012, 258, 9840-9848.	3.1	23
33	Bioresorbable Plates and Screws for Clinical Applications: A Review. Journal of Healthcare Engineering, 2012, 3, 243-260.	1.1	76
34	Meltâ€Derived Condensed Polymorphic Calcium Phosphate as Bone Substitute Material: An <i>In Vitro</i> Study. Journal of the American Ceramic Society, 2011, 94, 3023-3029.	1.9	7
35	Highly adherent bioactive glass thin films synthetized by magnetron sputtering at low temperature. Journal of Materials Science: Materials in Medicine, 2011, 22, 2693-2710.	1.7	40
36	Synthesis, mechanical and biological characterization of ionic doped carbonated hydroxyapatite/β-tricalcium phosphate mixtures. Acta Biomaterialia, 2011, 7, 1835-1843.	4.1	87

Sandra Pina

#	Article	IF	CITATIONS
37	Injectability of brushite-forming Mg-substituted and Sr-substituted α-TCP bone cements. Journal of Materials Science: Materials in Medicine, 2010, 21, 431-438.	1.7	38
38	Biomineralization capability of adherent bio-glass films prepared by magnetron sputtering. Journal of Materials Science: Materials in Medicine, 2010, 21, 1047-1055.	1.7	29
39	<i>In vitro</i> performance assessment of new brushiteâ€forming Zn―and ZnSrâ€substituted βâ€TCP bone cements. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 94B, 414-420.	1.6	36
40	Synthesis and structural characterization of strontium- and magnesium-co-substituted β-tricalcium phosphate. Acta Biomaterialia, 2010, 6, 571-576.	4.1	123
41	Bioactive glass thin films deposited by magnetron sputtering technique: The role of working pressure. Applied Surface Science, 2010, 256, 7102-7110.	3.1	35
42	Brushite-Forming Mg-, Zn- and Sr-Substituted Bone Cements for Clinical Applications. Materials, 2010, 3, 519-535.	1.3	52
43	Newly developed Sr-substituted α-TCP bone cements. Acta Biomaterialia, 2010, 6, 928-935.	4.1	79
44	Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements. , 2010, 20, 162-177.		78
45	Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement. Acta Biomaterialia, 2009, 5, 1233-1240.	4.1	60
46	An in vitro biological and anti-bacterial study on a sol–gel derived silver-incorporated bioglass system. Dental Materials, 2008, 24, 1343-1351.	1.6	231
47	Formation of Strontium-Stabilized ?-Tricalcium Phosphate from Calcium-Deficient Apatite. Journal of the American Ceramic Society, 2006, 89, 3277-3280.	1.9	71
48	Interfacial Interactions between Liquid New Biocompatible Model Glasses and Solid Metallic and Ceramic Substrates Used in Biomedicine. Key Engineering Materials, 2005, 284-286, 835-838.	0.4	4
49	Deposition of bioactive glass-ceramic thin-films by RF magnetron sputtering. Journal of the European Ceramic Society, 2003, 23, 1027-1030.	2.8	53