
Bradley S Case

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4483437/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume. Forest Ecology and Management, 2006, 225, 378-390.	3.2	209
2	Bacteria as Emerging Indicators of Soil Condition. Applied and Environmental Microbiology, 2017, 83, .	3.1	202
3	The future of farming: The value of ecosystem services in conventional and organic arable land. An experimental approach. Ecological Economics, 2008, 64, 835-848.	5.7	192
4	Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome, 2020, 8, 79.	11.1	137
5	Fine-scale spatial patterns in bacterial community composition and function within freshwater ponds. ISME Journal, 2014, 8, 1715-1726.	9.8	110
6	Increased stem density and competition may diminish the positive effects of warming at alpine treeline. Ecology, 2016, 97, 1668-1679.	3.2	93
7	Experimental evidence that the effectiveness of conservation biological control depends on landscape complexity. Journal of Applied Ecology, 2015, 52, 1274-1282.	4.0	84
8	Agricultural intensification drives landscapeâ€context effects on host–parasitoid interactions in agroecosystems. Journal of Applied Ecology, 2012, 49, 706-714.	4.0	77
9	The biogeography of stream bacteria. Global Ecology and Biogeography, 2013, 22, 544-554.	5.8	67
10	A novel framework for disentangling the scaleâ€dependent influences of abiotic factors on alpine treeline position. Ecography, 2014, 37, 838-851.	4.5	57
11	Assessing prediction errors of generalized tree biomass and volume equations for the boreal forest region of west-central Canada. Canadian Journal of Forest Research, 2008, 38, 878-889.	1.7	56
12	A global framework for linking alpineâ€ŧreeline ecotone patterns to underlying processes. Ecography, 2021, 44, 265-292.	4.5	52
13	URban Biotopes of Aotearoa New Zealand (URBANZ) II: Floristics, biodiversity and conservation values of urban residential and public woodlands, Christchurch. Urban Forestry and Urban Greening, 2009, 8, 149-162.	5.3	49
14	Relating aspen defoliation to changes in leaf area derived from field and satellite remote sensing data. Canadian Journal of Remote Sensing, 2003, 29, 299-313.	2.4	36
15	Connecting through space and time: catchmentâ€scale distributions of bacteria in soil, stream water and sediment. Environmental Microbiology, 2020, 22, 1000-1010.	3.8	31
16	Using satellite image data to estimate aboveground shelterbelt carbon stocks across an agricultural landscape. Agriculture, Ecosystems and Environment, 2012, 156, 142-150.	5.3	28
17	Following Rapoport's Rule: the geographic range and genome size of bacterial taxa decline at warmer latitudes. Environmental Microbiology, 2017, 19, 3152-3162.	3.8	25
18	Frost controls spring phenology of juvenile Smith fir along elevational gradients on the southeastern Tibetan Plateau. International Journal of Biometeorology, 2019, 63, 963-972.	3.0	25

BRADLEY S CASE

#	Article	IF	CITATIONS
19	When a foundation crumbles: forecasting forest dynamics following the decline of the foundation species <i>Tsuga canadensis</i> . Ecosphere, 2017, 8, e01893.	2.2	23
20	Interacting effects of management and environmental variability at multiple scales on invasive species distributions. Journal of Applied Ecology, 2009, 46, 1210-1218.	4.0	22
21	Species Diversity Associated with Foundation Species in Temperate and Tropical Forests. Forests, 2019, 10, 128.	2.1	21
22	Digital elevation modelling of soil type and drainage within small forested catchments. Canadian Journal of Soil Science, 2005, 85, 127-137.	1.2	19
23	Using codispersion analysis to characterize spatial patterns in species coâ€occurrences. Ecology, 2016, 97, 32-39.	3.2	17
24	Trees on farms: Investigating and mapping woody re-vegetation potential in an intensely-farmed agricultural landscape. Agriculture, Ecosystems and Environment, 2014, 183, 93-102.	5.3	15
25	Using codispersion analysis to quantify and understand spatial patterns in species–environment relationships. New Phytologist, 2016, 211, 735-749.	7.3	15
26	Fire facilitates warming-induced upward shifts of alpine treelines by altering interspecific interspecific interactions. Trees - Structure and Function, 2019, 33, 1051-1061.	1.9	15
27	The roles of nonâ€production vegetation in agroecosystems: A research framework for filling process knowledge gaps in a socialâ€ecological context. People and Nature, 2020, 2, 292-304.	3.7	14
28	The onset of xylogenesis is not related to distance from the crown in Smith fir trees from the southeastern Tibetan Plateau. Canadian Journal of Forest Research, 2016, 46, 885-889.	1.7	13
29	Measuring change in biological communities: multivariate analysis approaches for temporal datasets with low sample size. PeerJ, 2021, 9, e11096.	2.0	12
30	Local-scale topoclimate effects on treeline elevations: a country-wide investigation of New Zealand's southern beech treelines. PeerJ, 2015, 3, e1334.	2.0	12
31	Accounting for shifts in the frequency of suitable environments when testing for niche overlap. Methods in Ecology and Evolution, 2015, 6, 59-66.	5.2	11
32	How many samples? Soil variability affects confidence in the use of common agroecosystem soil indicators. Ecological Indicators, 2019, 102, 401-409.	6.3	11
33	Large-scale tree planting initiatives as an opportunity to derive carbon and biodiversity co-benefits: a case study from Aotearoa New Zealand. New Forests, 2022, 53, 589-602.	1.7	11
34	Changes in the analysis of temporal community dynamics data: a 29-year literature review. PeerJ, 2021, 9, e11250.	2.0	10
35	Achieving win-win outcomes for pastoral farming and biodiversity conservation in New Zealand. New Zealand Journal of Ecology, 2020, 44, .	1.1	10
36	Restoring mature-phase forest tree species through enrichment planting in New Zealand's lowland landscapes. New Zealand Journal of Ecology, 2020, 44, .	1.1	8

BRADLEY S CASE

#	Article	IF	CITATIONS
37	Interactions between landscape structure and bird mobility traits affect the connectivity of agroecosystem networks. Ecological Indicators, 2021, 129, 107962.	6.3	7
38	Can ecosystem-scale translocations mitigate the impact of climate change on terrestrial biodiversity? Promises, pitfalls, and possibilities. F1000Research, 2016, 5, 146.	1.6	5
39	Patterns of range size in New Zealand ferns and lycophytes. , 2018, 42, .		5
40	Simulating topoclimatic data to support bioclimatic research in alpine environments: application and assessment of a mesoscale atmospheric model. International Journal of Climatology, 2016, 36, 885-899.	3.5	4
41	Sensitivity of Codispersion to Noise and Error in Ecological and Environmental Data. Forests, 2018, 9, 679.	2.1	4
42	Land-use history impacts spatial patterns and composition of woody plant species across a 35-hectare temperate forest plot. PeerJ, 2022, 10, e12693.	2.0	4
43	Detecting Ecological Patterns Along Environmental Gradients: Alpine Treeline Ecotones. Chance, 2016, 29, 10-15.	0.2	3
44	The significance of sheep and beef farms to conservation of native vegetation in New Zealand. New Zealand Journal of Ecology, 0, , .	1.1	2
45	Factors affecting home range size of feral cats: a meta-analysis. New Zealand Journal of Ecology, 0, , .	1.1	2
46	The New Zealand Beef and Sheep Sector's Contribution to Biodiversity and Carbon Sequestration. Proceedings (mdpi), 2019, 8, 48.	0.2	0