List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/448294/publications.pdf Version: 2024-02-01

LINCAMALLII CIDIBABIL

#	Article	IF	CITATIONS
1	Photodynamic Therapy: Past, Present and Future. Chemical Record, 2017, 17, 775-802.	2.9	380
2	Efficient Sensitization of Nanocrystalline TiO2 Films by a Near-IR-Absorbing Unsymmetrical Zinc Phthalocyanine. Angewandte Chemie - International Edition, 2007, 46, 373-376.	7.2	334
3	A Combined Experimental and Computational Investigation of Anthracene Based Sensitizers for DSSC: Comparison of Cyanoacrylic and Malonic Acid Electron Withdrawing Groups Binding onto the TiO ₂ Anatase (101) Surface. Journal of Physical Chemistry C, 2009, 113, 20117-20126.	1.5	190
4	Femtosecond and nanosecond nonlinear optical properties of alkyl phthalocyanines studied using Z-scan technique. Chemical Physics Letters, 2007, 447, 274-278.	1.2	167
5	Nonlinear optical and optical limiting properties of phthalocyanines in solution and thin films of PMMA at 633Ânm studied using a cw laser. Materials Letters, 2007, 61, 4426-4431.	1.3	158
6	Metal-free organic dyes for dye-sensitized solar cells: recent advances. Tetrahedron, 2012, 68, 8383-8393.	1.0	138
7	Large third-order optical nonlinearity and optical limiting in symmetric and unsymmetrical phthalocyanines studied using Z-scan. Optics Communications, 2007, 280, 206-212.	1.0	137
8	DNA interactions of new mixed-ligand complexes of cobalt(III) and nickel(II) that incorporate modified phenanthroline ligands. Journal of Inorganic Biochemistry, 2003, 94, 138-145.	1.5	131
9	Unsymmetrical alkoxy zinc phthalocyanine for sensitization of nanocrystalline TiO2 films. Solar Energy Materials and Solar Cells, 2007, 91, 1611-1617.	3.0	128
10	Studies of third-order optical nonlinearity and nonlinear absorption in tetra tolyl porphyrins using degenerate four wave mixing and Z-scan. Optics Communications, 2000, 182, 255-264.	1.0	121
11	Molecular engineering of sensitizers for dyeâ€sensitized solar cell applications. Chemical Record, 2012, 12, 306-328.	2.9	109
12	Donor-π–Acceptor Based Stable Porphyrin Sensitizers for Dye-Sensitized Solar Cells: Effect of Ï€-Conjugated Spacers. Journal of Physical Chemistry C, 2017, 121, 6464-6477.	1.5	101
13	D-Ï€-A organic dyes with carbazole as donor for dye-sensitized solar cells. Synthetic Metals, 2011, 161, 96-105.	2.1	100
14	"Axial-Bonding―Type Hybrid Porphyrin Arrays: Synthesis, Spectroscopy, Electrochemistry, and Singlet State Properties. Inorganic Chemistry, 1999, 38, 4971-4980.	1.9	95
15	Emerging molecular design strategies of unsymmetrical phthalocyanines for dye-sensitized solar cell applications. RSC Advances, 2014, 4, 6970.	1.7	94
16	Femtosecond nonlinear optical properties of alkoxy phthalocyanines at 800nm studied using Z-Scan technique. Chemical Physics Letters, 2008, 464, 211-215.	1.2	87
17	Nonlinear optical and optical limiting studies of alkoxy phthalocyanines in solutions studied at 532Ânm with nanosecond pulse excitation. Applied Physics B: Lasers and Optics, 2008, 91, 149-156.	1.1	85
18	Emerging of Inorganic Hole Transporting Materials For Perovskite Solar Cells. Chemical Record, 2017, 17, 681-699.	2.9	83

#	Article	IF	CITATIONS
19	Recent advances in flexible perovskite solar cells. Chemical Communications, 2015, 51, 14696-14707.	2.2	78
20	Recent Advances in Halide-Based Perovskite Crystals and Their Optoelectronic Applications. Crystal Growth and Design, 2018, 18, 2645-2664.	1.4	75
21	Ultrafast nonlinear optical properties of alkyl-phthalocyanine nanoparticles investigated using Z-scan technique. Journal of Applied Physics, 2009, 105, .	1.1	71
22	Synthesis, Optical, Electrochemical, DFT Studies, NLO Properties, and Ultrafast Excited State Dynamics of Carbazole-Induced Phthalocyanine Derivatives. Journal of Physical Chemistry C, 2019, 123, 11118-11133.	1.5	70
23	Recent Advances of Cobalt(II/III) Redox Couples for Dye‣ensitized Solar Cell Applications. Chemical Record, 2015, 15, 760-788.	2.9	68
24	Photoinduced Electron Transfer in Bisporphyrin–Diimide Complexes. Chemistry - A European Journal, 2002, 8, 3938-3947.	1.7	63
25	Sterically demanding zinc(<scp>ii</scp>) phthalocyanines: synthesis, optical, electrochemical, nonlinear optical, excited state dynamics studies. Journal of Materials Chemistry C, 2014, 2, 1711-1722.	2.7	63
26	New Molecular Arrays Based on a Tin(IV) Porphyrin Scaffold. Inorganic Chemistry, 2001, 40, 6757-6766.	1.9	61
27	Porphyrin-rhodanine dyads for dye sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2006, 10, 1007-1016.	0.4	59
28	Ultrafast Excited-State Dynamics and Dispersion Studies of Third-Order Optical Nonlinearities in Novel Corroles. Journal of Physical Chemistry C, 2012, 116, 17828-17837.	1.5	59
29	Subphthalocyanine as hole transporting material for perovskite solar cells. RSC Advances, 2015, 5, 69813-69818.	1.7	56
30	Orientation Dependence of Energy Transfer in an Anthracene–Porphyrin Donor–Acceptor System This work was supported by CSIR and DST (New Delhi, India). We thank Dr. T. P. Radhakrishnan for many helpful discussions Angewandte Chemie - International Edition, 2001, 40, 3621.	7.2	54
31	Electronically and Catalytically Functional Carbon Cloth as a Permeable and Flexible Counter Electrode for Dye Sensitized Solar Cell. Electrochimica Acta, 2014, 123, 248-253.	2.6	52
32	Recent Progress and Emerging Applications of Rare Earth Doped Phosphor Materials for Dye‧ensitized and Perovskite Solar Cells: A Review. Chemical Record, 2020, 20, 65-88.	2.9	52
33	Bulky Phenanthroimidazole–Phenothiazine Dâ~'Ĩ€â€"A Based Organic Sensitizers for Application in Efficient Dye-Sensitized Solar Cells. ACS Applied Energy Materials, 2020, 3, 6758-6767.	2.5	51
34	Picosecond and femtosecond optical nonlinearities of novel corroles. Journal of Porphyrins and Phthalocyanines, 2012, 16, 140-148.	0.4	50
35	Unsymmetrical extended π-conjugated zinc phthalocyanine for sensitization of nanocrystalline TiO2 films. Journal of Chemical Sciences, 2009, 121, 75-82.	0.7	49
36	Role of Co‧ensitizers in Dye‧ensitized Solar Cells. ChemSusChem, 2017, 10, 4668-4689.	3.6	48

#	Article	IF	CITATIONS
37	Cu(<scp>ii</scp> / <scp>i</scp>) redox couples: potential alternatives to traditional electrolytes for dye-sensitized solar cells. Materials Advances, 2021, 2, 1229-1247.	2.6	48
38	Picosecond nonlinear optical studies of unsymmetrical alkyl and alkoxy phthalocyanines. Materials Letters, 2010, 64, 1915-1917.	1.3	46
39	Synthesis, Crystal Structure, Electronic Spectroscopy, Electrochemistry and Biological Studies of Ferrocene–Carbohydrate Conjugates. European Journal of Inorganic Chemistry, 2012, 2012, 2267-2277.	1.0	46
40	Hierarchical Porous TiO ₂ Embedded Unsymmetrical Zinc–Phthalocyanine Sensitizer for Visible-Light-Induced Photocatalytic H ₂ Production. Journal of Physical Chemistry C, 2018, 122, 495-502.	1.5	46
41	Ultrafast nonlinear optical properties of alkyl phthalocyanines investigated using degenerate four-wave mixing technique. Optical Materials, 2009, 31, 1042-1047.	1.7	45
42	A new familiy of heteroleptic ruthenium(ii) polypyridyl complexes for sensitization of nanocrystalline TiO2 films. Dalton Transactions, 2011, 40, 4497.	1.6	43
43	Excited state dynamics in tetra tolyl porphyrins studied using degenerate four wave mixing with incoherent light and ps pulses. Optics Communications, 2001, 192, 123-133.	1.0	42
44	Femtosecond, broadband nonlinear optical studies of a zinc porphyrin and zinc phthalocyanine. Optics and Laser Technology, 2018, 108, 418-425.	2.2	42
45	Novel Catalytic Hunsdieckerâ^'Heck (CHH) Strategy toward All-EStereocontrolled Ferrocene-Capped Conjugated Pushâ^'Pull Polyenes. Organometallics, 2000, 19, 1464-1469.	1.1	41
46	Near-infrared squaraine co-sensitizer for high-efficiency dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 14279-14285.	1.3	41
47	Soluble tetratriphenylamine Zn phthalocyanine as Hole Transporting Material for Perovskite Solar Cells. Electrochimica Acta, 2016, 222, 875-880.	2.6	41
48	Picosecond optical nonlinearities in symmetrical and unsymmetrical phthalocyanines studied using the Z-scan technique. Pramana - Journal of Physics, 2010, 75, 1017-1023.	0.9	40
49	Sterically demanded unsymmetrical zinc phthalocyanines for dye-sensitized solar cells. Dyes and Pigments, 2013, 98, 518-529.	2.0	40
50	Fluorescence and absorption spectroscopic studies on the interaction of porphyrins with snake gourd (Trichosanthes anguina) seed lectin. Journal of Photochemistry and Photobiology B: Biology, 2000, 55, 49-55.	1.7	39
51	Corrole dyes for dye-sensitized solar cells: The crucial role of the dye/semiconductor energy level alignment. Computational and Theoretical Chemistry, 2014, 1030, 59-66.	1.1	38
52	Carbon nanohorns based counter electrodes developed by spray method for dye sensitized solar cells. Solar Energy, 2016, 133, 524-532.	2.9	38
53	Recent developments in tetrathiafulvalene and dithiafulvalene based metal-free organic sensitizers for dye-sensitized solar cells: a mini-review. Sustainable Energy and Fuels, 2017, 1, 678-688.	2.5	38
54	High molar extinction coefficient amphiphilic ruthenium sensitizers for efficient and stable mesoscopic dye-sensitized solar cells. Energy and Environmental Science, 2009, 2, 770.	15.6	37

#	Article	IF	CITATIONS
55	Synthesis and characterization of novel 2,5-diphenyl-1,3,4-oxadiazole derivatives of anthracene and its application as electron transporting blue emitters in OLEDs. Synthetic Metals, 2011, 161, 869-880.	2.1	37
56	Phenothiazine functional materials for organic optoelectronic applications. Physical Chemistry Chemical Physics, 2021, 23, 14969-14996.	1.3	37
57	Revealing high hydrogen evolution activity in zinc porphyrin sensitized hierarchical porous TiO2 photocatalysts. International Journal of Hydrogen Energy, 2020, 45, 7508-7516.	3.8	36
58	Sulfonated naphthyl porphyrins as agents against HIV-1. Journal of Inorganic Biochemistry, 2005, 99, 813-821.	1.5	35
59	Pt-free spray coated reduced graphene oxide counter electrodes for dye sensitized solar cells. Solar Energy, 2016, 137, 143-147.	2.9	35
60	Spacer controlled photo-induced intramolecular electron transfer in a series of phenothiazine-boron dipyrromethene donor–acceptor dyads. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 312, 8-19.	2.0	34
61	Synthesis and characterization of tetratriphenylamine Zn phthalocyanine as hole transporting material for perovskite solar cells. Solar Energy, 2016, 140, 60-65.	2.9	34
62	Triphenylamine–phthalocyanine based sensitizer for sensitization of nanocrystalline TiO2 films. Solar Energy, 2011, 85, 1204-1212.	2.9	33
63	Ultrafast Interfacial Charge-Transfer Dynamics in a Donor-ï€-Acceptor Chromophore Sensitized TiO ₂ Nanocomposite. Journal of Physical Chemistry C, 2013, 117, 4824-4835.	1.5	33
64	Enhanced light harvesting with novel photon upconverted Y2CaZnO5:Er3+/Yb3+ nanophosphors for dye sensitized solar cells. Solar Energy, 2017, 157, 956-965.	2.9	33
65	Phosphorus(V)corrole- Porphyrin Based Hetero Trimers: Synthesis, Spectroscopy and Photochemistry. Journal of Fluorescence, 2014, 24, 569-577.	1.3	32
66	Bis(porphyrin)–Anthraquinone Triads: Synthesis, Spectroscopy, and Photochemistry. Journal of Physical Chemistry A, 2013, 117, 2944-2951.	1.1	31
67	Comparative photophysical and femtosecond third-order nonlinear optical properties of novel imidazole substituted metal phthalocyanines. Dyes and Pigments, 2021, 184, 108791.	2.0	31
68	Ferrocenyl pyrazoline based multichannel receptors for a simple and highly selective recognition of Hg2+ and Cu2+ ions. Journal of Organometallic Chemistry, 2015, 780, 20-29.	0.8	30
69	Hypochlorite-promoted inhibition of photo-induced electron transfer in phenothiazine–borondipyrromethene donor–acceptor dyad: a cost-effective and metal-free "turn-on― fluorescent chemosensor for hypochlorite. New Journal of Chemistry, 2017, 41, 5322-5333.	1.4	30
70	Stable and charge recombination minimized π-extended thioalkyl substituted tetrathiafulvalene dye-sensitized solar cells. Materials Chemistry Frontiers, 2017, 1, 460-467.	3.2	30
71	D–΀–A system based on zinc porphyrin dyes for dye-sensitized solar cells: Combined experimental and DFT–TDDFT study. Polyhedron, 2015, 100, 313-320.	1.0	29
72	Efficient near IR porphyrins containing a triphenylamine-substituted anthryl donating group for dye sensitized solar cells. Journal of Materials Chemistry C, 2019, 7, 13594-13605.	2.7	29

#	Article	IF	CITATIONS
73	Optoelectronic, femtosecond nonlinear optical properties and excited state dynamics of a triphenyl imidazole induced phthalocyanine derivative. RSC Advances, 2019, 9, 36726-36741.	1.7	29
74	Recent Advances in Perovskite-Based Solar Cells. Current Science, 2016, 111, 1173.	0.4	29
75	Axialâ€Bonding Heterotrimers Based on Tetrapyrrolic Rings: Synthesis, Characterization, and Redox and Photophysical Properties. Chemistry - an Asian Journal, 2007, 2, 1574-1580.	1.7	28
76	Synthesis, crystal structure, electronic spectroscopy, electrochemistry and biological studies of carbohydrate containing ferrocene amides. Applied Organometallic Chemistry, 2012, 26, 369-376.	1.7	28
77	Ambient stable, hydrophobic, electrically conductive porphyrin hole-extracting materials for printable perovskite solar cells. Journal of Materials Chemistry C, 2019, 7, 4702-4708.	2.7	28
78	Solvent Effects on the Electrochemistry and Spectroelectrochemistry of Diruthenium Complexes. Studies of Ru2(L)4Cl Where L = 2-CH3ap, 2-Fap, and 2,4,6-F3ap, and ap Is the 2-Anilinopyridinate Anion. Inorganic Chemistry, 2003, 42, 8309-8319.	1.9	27
79	Synthesis, Structural, Spectroscopic, and Electrochemical Characterization of High Oxidation State Diruthenium Complexes Containing Four Identical Unsymmetrical Bridging Ligands. Inorganic Chemistry, 2004, 43, 4825-4832.	1.9	27
80	Ultrafast Photoinduced Charge Separation Leading to Highâ€Energy Radical Ionâ€Pairs in Directly Linked Corrole–C ₆₀ and Triphenylamine–Corrole ₆₀ Donor–Acceptor Conjugates. Chemistry - an Asian Journal, 2015, 10, 2708-2719.	1.7	27
81	Femtosecond to Microsecond Dynamics of Soret-Band Excited Corroles. Journal of Physical Chemistry C, 2015, 119, 28691-28700.	1.5	27
82	Ultrafast nonlinear optical properties and excited-state dynamics of Soret-band excited D-Ï€-D porphyrins. Optical Materials, 2020, 107, 110041.	1.7	27
83	Benzimidazole-functionalized ancillary ligands for heteroleptic Ru(<scp>ii</scp>) complexes: synthesis, characterization and dye-sensitized solar cell applications. Dalton Transactions, 2015, 44, 14697-14706.	1.6	26
84	Triphenylamine-functionalized corrole sensitizers for solar-cell applications. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 194-202.	0.8	26
85	Bulky Nature Phenanthroimidazole-Based Porphyrin Sensitizers for Dye-Sensitized Solar Cell Applications. Journal of Physical Chemistry C, 2017, 121, 25691-25704.	1.5	26
86	Synthesis, characterization and antimicrobial evaluation of ferrocene–oxime ether benzyl 1 <i>H</i> -1,2,3-triazole hybrids. New Journal of Chemistry, 2019, 43, 8341-8351.	1.4	26
87	Ferrocenyl chalcogeno (sugar) triazole conjugates: Synthesis, characterization and anticancer properties. Journal of Organometallic Chemistry, 2016, 813, 125-130.	0.8	25
88	Hypochloriteâ€Mediated Modulation of Photoinduced Electron Transfer in a Phenothiazine–Boron dipyrromethene Electron Donor–Acceptor Dyad: A Highly Water Soluble "Turnâ€On―Fluorescent Probe for Hypochlorite. Chemistry - an Asian Journal, 2018, 13, 1594-1608.	1.7	25
89	Substituent and Isomer Effects on Structural, Spectroscopic, and Electrochemical Properties of Dirhodium(III,II) Complexes Containing Four Identical Unsymmetrical Bridging Ligands. Inorganic Chemistry, 2003, 42, 8663-8673.	1.9	24
90	Electrochemical and Spectroelectrochemical Characterization of Ru24+and Ru23+Complexes under a CO Atmosphere. Inorganic Chemistry, 2004, 43, 1012-1020.	1.9	24

#	Article	IF	CITATIONS
91	Synthesis, characterization, electrochemistry and optical properties of new 1,3,5-trisubstituted ferrocenyl pyrazolines and pyrazoles containing sulfonamide moiety. Journal of Organometallic Chemistry, 2012, 718, 64-73.	0.8	24
92	Effect of amide-triazole linkers on the electrochemical and biological properties of ferrocene-carbohydrate conjugates. Dalton Transactions, 2013, 42, 1180-1190.	1.6	24
93	Photoinduced energy transfer in carbazole–BODIPY dyads. Physical Chemistry Chemical Physics, 2018, 20, 27418-27428.	1.3	24
94	Intramolecular photoinduced reactions in corrole–pyrene and corrole–fluorene dyad systems. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 284, 18-26.	2.0	23
95	Corrole–ferrocene and corrole–anthraquinone dyads: synthesis, spectroscopy and photochemistry. Physical Chemistry Chemical Physics, 2015, 17, 26607-26620.	1.3	23
96	Metallated Macrocyclic Derivatives as a Hole – Transporting Materials for Perovskite Solar Cells. Chemical Record, 2019, 19, 2157-2177.	2.9	23
97	Tetrathiafulvalene Scaffold-Based Sensitizer on Hierarchical Porous TiO ₂ : Efficient Light-Harvesting Material for Hydrogen Production. Journal of Physical Chemistry C, 2019, 123, 70-81.	1.5	23
98	Ultrafast photophysical and nonlinear optical properties of novel free base and axially substituted phosphorus (V) corroles. Journal of Molecular Liquids, 2020, 311, 113308.	2.3	23
99	Synthesis, electrochemical and photophysical properties of β-carboxy triaryl corroles. Tetrahedron Letters, 2012, 53, 991-993.	0.7	22
100	Ultrafast Intramolecular Photoinduced Energy Transfer Events in Benzothiazole–Borondipyrromethene Donor–Acceptor Dyads. Journal of Physical Chemistry C, 2016, 120, 16305-16321.	1.5	22
101	Stipulating Low Production Cost Solar Cells All Set to Retail…!. Chemical Record, 2019, 19, 661-674.	2.9	22
102	Unravelling the impact of thiophene auxiliary in new porphyrin sensitizers for high solar energy conversion. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 392, 112408.	2.0	22
103	A new terpyridine cobalt complex redox shuttle for dye-sensitized solar cells. Inorganica Chimica Acta, 2013, 406, 106-112.	1.2	21
104	Near-infrared absorbing unsymmetrical Zn(II) phthalocyanine for dye-sensitized solar cells. Inorganica Chimica Acta, 2013, 407, 289-296.	1.2	21
105	Palladium(II) carbohydrate complexes of alkyl, aryl and ferrocenyl esters and their cytotoxic activities. Inorganica Chimica Acta, 2014, 416, 164-170.	1.2	21
106	Synthesis and functional characterization of a fluorescent peptide probe for non invasive imaging of collagen in live tissues. Experimental Cell Research, 2014, 327, 91-101.	1.2	21
107	Multistep Electron Injection Dynamics and Optical Nonlinearity Investigations of π-Extended Thioalkyl-Substituted Tetrathiafulvalene Sensitizers. Journal of Physical Chemistry C, 2020, 124, 24039-24051.	1.5	21
108	Synthesis and photoelectrochemical characterization of a high molar extinction coefficient heteroleptic ruthenium(II) complex. Journal of Chemical Sciences, 2011, 123, 371-378.	0.7	20

#	Article	IF	CITATIONS
109	Ethynyl thiophene-appended unsymmetrical zinc porphyrin sensitizers for dye-sensitized solar cells. RSC Advances, 2014, 4, 14165-14175.	1.7	20
110	Photoinduced intramolecular reactions in triphenylamine–corrole dyads. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 296, 11-18.	2.0	20
111	Design of diketopyrrolopyrrole chromophores applicable as sensitizers in dye-sensitized photovoltaic windows for green houses. Dyes and Pigments, 2016, 134, 472-479.	2.0	20
112	Effect of spacers and anchoring groups of extended ï€-conjugated tetrathiafulvalene based sensitizers on the performance of dye sensitized solar cells. Sustainable Energy and Fuels, 2017, 1, 345-353.	2.5	20
113	Germanium(IV) phthalocyanine-porphyrin based hetero trimers: synthesis, spectroscopy and photochemistry. Journal of Porphyrins and Phthalocyanines, 2012, 16, 282-289.	0.4	19
114	Optical, electrochemical, third-order nonlinear optical, and excited state dynamics studies of thio-zinc phthalocyanine. Journal of Porphyrins and Phthalocyanines, 2014, 18, 305-315.	0.4	19
115	Light induced intramolecular electron and energy transfer events in rigidly linked borondipyrromethene: Corrole Dyad. Journal of Luminescence, 2016, 177, 209-218.	1.5	19
116	Near-infrared unsymmetrical blue and green squaraine sensitizers. Photochemical and Photobiological Sciences, 2016, 15, 287-296.	1.6	19
117	Influence of strong electron donating nature of phenothiazine on A3B- type porphyrin based dye sensitized solar cells. Solar Energy, 2019, 184, 620-627.	2.9	19
118	Effects of methoxy group(s) on D-ï€-A porphyrin based DSSCs: efficiency enhanced by co-sensitization. Materials Chemistry Frontiers, 2022, 6, 580-592.	3.2	19
119	Carbohydrate-Based Ferrocenyl Boronate Esters: Synthesis, Characterization, Crystal Structures, and Antibacterial Activity. European Journal of Inorganic Chemistry, 2013, 2013, 5311-5319.	1.0	18
120	(4-Ferrocenylphenyl)propargyl ether derived carbohydrate triazoles: influence of a hydrophobic linker on the electrochemical and cytotoxic properties. New Journal of Chemistry, 2014, 38, 227-236.	1.4	18
121	Synthesis and spectroscopic studies of axially bound tetra(phenothiazinyl)/tetra(bis(4′-tert-butylbiphenyl-4-yl)aniline)-zinc(II)porphyrin-fullero[C60 & C70]pyrrolidine donor–acceptor triads. Inorganic Chemistry Communication, 2016, 66, 5-10.	1.8	18
122	Axially substituted phosphorous(<scp>v</scp>) corrole with polycyclic aromatic hydrocarbons: syntheses, X-ray structures, and photoinduced energy and electron transfer studies. New Journal of Chemistry, 2018, 42, 8230-8240.	1.4	18
123	Kinetics of dye regeneration in liquid electrolyte unveils efficiency of 10.5% in dye-sensitized solar cells. Journal of Materials Chemistry C, 2018, 6, 11444-11456.	2.7	18
124	Novel Amphiphilic G-Quadruplex Binding Synthetic Derivative of TMPyP4 and Its Effect on Cancer Cell Proliferation and Apoptosis Induction. Biochemistry, 2018, 57, 6514-6527.	1.2	18
125	Demagnetization field driven charge transport in a TiO2 based dye sensitized solar cell. Solar Energy, 2019, 187, 281-289.	2.9	18
126	Porphyrin-based supramolecular assemblies and their applications in NLO and PDT. Journal of Porphyrins and Phthalocyanines, 2021, 25, 382-395.	0.4	18

#	Article	IF	CITATIONS
127	Functionalized zinc porphyrin as light harvester in dye sensitized solar cells. Journal of Chemical Sciences, 2008, 120, 455-462.	0.7	17
128	One-pot synthesis of β-carboxy tetra aryl porphyrins: potential applications to dye-sensitized solar cells. Tetrahedron Letters, 2010, 51, 2865-2867.	0.7	17
129	1â€(2â€Pyridyl)â€3â€ferrocenylpyrazolineâ€Based Multichannel Signaling Receptors for Co ²⁺ , Cu ²⁺ , and Zn ²⁺ Ions. European Journal of Inorganic Chemistry, 2013, 2013, 6019-6027.	1.0	17
130	Excitational energy and photoinduced electron transfer reactions in Ge(Ⅳ) corrole–porphyrin hetero dimers. Journal of Luminescence, 2014, 145, 357-363.	1.5	17
131	Carbazole-based sensitizers for potential application to dye sensitized solar cells. Journal of Chemical Sciences, 2015, 127, 383-394.	0.7	17
132	Efficient Solution Processable Polymer Solar Cells Using Newly Designed and Synthesized Fullerene Derivatives. Journal of Physical Chemistry C, 2016, 120, 19493-19503.	1.5	17
133	Microwave-Assisted, Rapid, Solvent-Free Aza-Michael Reaction by Perchloric Acid Impregnated on Silica Gel. Synthetic Communications, 2009, 39, 3982-3989.	1.1	15
134	Optical, electrochemical, third order nonlinear optical, and excited state dynamics studies of bis(3,5-trifluoromethyl)phenyl-zinc phthalocyanine. RSC Advances, 2015, 5, 20810-20817.	1.7	15
135	Unveiling the Reversibility of Crystalline–Amorphous Nanostructures via Sonication-Induced Protonation. Journal of Physical Chemistry C, 2018, 122, 10255-10260.	1.5	15
136	Role of π-spacer in regulating the photovoltaic performance of copper electrolyte dye-sensitized solar cells using triphenylimidazole dyes. Materials Advances, 2022, 3, 1231-1239.	2.6	15
137	Intramolecular Energy Transfer in a Protoporphyrin-(Anthracene)2 Triad#. Research on Chemical Intermediates, 1999, 25, 769-788.	1.3	14
138	Highly Efficient Microwaveâ€Assisted Synthesis of Subphthalocyanines. Synthetic Communications, 2007, 37, 4141-4147.	1.1	14
139	β-pyrrole substituted porphyrin–pyrene dyads using vinylene spacer: Synthesis, characterization and photophysical properties. Journal of Chemical Sciences, 2013, 125, 259-266.	0.7	14
140	Metal-free propargylation/aza-annulation approach to substituted β-carbolines and evaluation of their photophysical properties. Organic and Biomolecular Chemistry, 2019, 17, 9291-9304.	1.5	14
141	Crystalline D-ï€-D porphyrin molecules as a hole-transporting material for printable perovskite solar cells. Solar Energy, 2020, 206, 539-547.	2.9	14
142	π onjugated Materials Derived From Boronâ€Chalcogenophene Combination. A Brief Description of Synthetic Routes and Optoelectronic Applications. Chemical Record, 2021, 21, 1738-1770.	2.9	14
143	Synthesis, Structure and Photophysical Properties of Ferrocenyl or Mixed Sandwich Cobaltocenyl Ester Linked <i>meso</i> â€Tetratolylporphyrin Dyads. Photochemistry and Photobiology, 2015, 91, 33-41.	1.3	13
144	MA ₂ CoBr ₄ : lead-free cobalt-based perovskite for electrochemical conversion of water to oxygen. Chemical Communications, 2019, 55, 6779-6782.	2.2	13

#	Article	IF	CITATIONS
145	1,2,3â€Triazole derivatives of 3â€ferrocenylideneâ€2â€oxindole: Synthesis, characterization, electrochemical and antimicrobial evaluation. Applied Organometallic Chemistry, 2019, 33, e4817.	1.7	13
146	Bioactive isatin (oxime)-triazole-thiazolidinedione ferrocene molecular conjugates: Design, synthesis and antimicrobial activities. Journal of Organometallic Chemistry, 2021, 937, 121716.	0.8	13
147	Efficient visible-light-driven hydrogen production by Zn–porphyrin based photocatalyst with engineered active donor–acceptor sites. Materials Advances, 2021, 2, 4762-4771.	2.6	13
148	Femtosecond excited-state dynamics and ultrafast nonlinear optical investigations of ethynylthiophene functionalized porphyrin. Optical Materials, 2022, 127, 112232.	1.7	13
149	Durable Unsymmetrical Zinc Phthalocyanine for Near IR Sensitization of Nanocrystalline TiO ₂ Films with Non-Volatile Redox Electrolytes. Journal of Nano Research, 2008, 2, 39-48.	0.8	12
150	Synthesis and photophysical properties of a novel corrole–anthraquinone–corrole molecular system. Journal of Luminescence, 2014, 153, 34-39.	1.5	12
151	Enhanced dye sensitized solar cell performance with high surface area thin ZnO film and PEDOT:PSS. Solar Energy, 2015, 118, 126-133.	2.9	12
152	Heteroleptic Ru(<scp>ii</scp>) cyclometalated complexes derived from benzimidazole-phenyl carbene ligands for dye-sensitized solar cells: an experimental and theoretical approach. Materials Chemistry Frontiers, 2017, 1, 947-957.	3.2	12
153	Ultrafast intramolecular charge transfer dynamics and nonlinear optical properties of phenothiazine-based push–pull zinc porphyrin. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 433, 114141.	2.0	12
154	Organic-Ruthenium(II) Polypyridyl Complex Based Sensitizer for Dye-Sensitized Solar Cell Applications. Advances in OptoElectronics, 2011, 2011, 1-8.	0.6	11
155	The performance enhancement of HTM-free ZnO nanowire-based perovskite solar cells via low-temperature TiCl4 treatment. Solar Energy, 2018, 170, 158-163.	2.9	11
156	Solution processed aligned ZnO nanowires as anti-reflection and electron transport layer in organic dye-sensitized solar cells. Optical Materials, 2019, 95, 109243.	1.7	11
157	Recent Advances on Porphyrin Dyes for Dye-Sensitized Solar Cells. , 2019, , 231-284.		11
158	Isophoroneâ€boronate ester: A simple chemosensor for optical detection of fluoride anion. Applied Organometallic Chemistry, 2019, 33, e4688.	1.7	11
159	Hexyl dithiafulvalene (HDT)-substituted carbazole (CBZ) D–π–A based sensitizers for dye-sensitized solar cells. New Journal of Chemistry, 2020, 44, 18481-18488.	1.4	11
160	An investigation into the origin of variations in photovoltaic performance using D–D–π–A and D–A–I€â€"A triphenylimidazole dyes with a copper electrolyte. Molecular Systems Design and Engineering, 2021, 6, 779-789.	1.7	11
161	1D alignment of Co(<scp>ii</scp>) metalated porphyrin–napthalimide based self-assembled nanowires for photocatalytic hydrogen evolution. Nanoscale, 2021, 14, 140-146.	2.8	11
162	Functional ï€-conjugated tetrathiafulvalene decorated with benzothiadiazole organic sensitizers for dye sensitized solar cells. New Journal of Chemistry, 2019, 43, 8919-8929.	1.4	10

#	Article	IF	CITATIONS
163	Conducting Nanofibers: Diagonal Scrolling of 2D Nanosheets into 1D Nanostructures via In Situ Self-Assembly. ACS Applied Electronic Materials, 2021, 3, 176-183.	2.0	10
164	Optical, Electrochemical, Third-Order Nonlinear Optical Investigations of 3,4,5-Trimethoxy Phenyl Substituted Non-Aqueous Phthalocyanines. Frontiers in Chemistry, 2021, 9, 713939.	1.8	10
165	Noble metals (Ag, Au, Pt) functionalized carbon nanohorns as alternate counter electrodes for dye sensitized solar cells. Journal of Materials Science: Materials in Electronics, 2016, 27, 5802-5809.	1.1	9
166	Light induced oxidation of an indoline derived system triggered spherical aggregates. Physical Chemistry Chemical Physics, 2017, 19, 26535-26539.	1.3	9
167	PEO based polymer composite with added acetamide, Nal/I2as gel polymer electrolyte for dye sensitized solar cell applications. IOP Conference Series: Materials Science and Engineering, 2018, 310, 012012.	0.3	9
168	Effect of auxiliary acceptor on D-ï€-A based porphyrin sensitizers for dye sensitized solar cells. Journal of Porphyrins and Phthalocyanines, 2021, 25, 407-417.	0.4	9
169	A new family of donor-acceptor systems comprising tin(IV) porphyrin and anthracene subunits: Synthesis, spectroscopy and energy transfer studies. Journal of Chemical Sciences, 2002, 114, 565-578.	0.7	8
170	Unprecedented Chargeâ€Transfer Complex of Fused Diporphyrin as Nearâ€Infrared Absorptionâ€Induced Highâ€Aspectâ€Ratio Nanorods. Chemistry - an Asian Journal, 2016, 11, 3498-3502.	1.7	8
171	Carbon nanohorns functionalized PEDOT:PSS nanocomposites for dye sensitized solar cell applications. Journal of Materials Science: Materials in Electronics, 2016, 27, 4050-4056.	1.1	8
172	2,4â€ī hiazolidinedione as a Bioactive Linker for Ferrocenyl Sugar–Triazole Conjugates: Synthesis, Characterization and Biological Properties. European Journal of Inorganic Chemistry, 2018, 2018, 1571-1580.	1.0	8
173	<i>N</i> -Arylation of ferrocenyl 2,4-thiazolidinedione conjugates <i>via</i> a copper-catalysed Chan–Lam cross coupling reaction with aryl boronic acids and their optoelectronic properties. New Journal of Chemistry, 2018, 42, 12587-12594.	1.4	8
174	Excitation-Wavelength-Dependent Light-Induced Electron Transfer and Twisted Intramolecular Charge Transfer in <i>N</i> , <i>N</i> Bis(4â€2- <i>tert</i> -butylbiphenyl-4-yl)aniline Functionalized Borondipyrromethenes. Journal of Physical Chemistry A, 2020, 124, 9738-9750.	1.1	8
175	Highly Efficient One-Pot Synthesis of Metalloporphyrazines under Mild Conditions. Synlett, 2006, 2006, 1604-1606.	1.0	7
176	Ferrocenyl pseudo-dipeptides derived from 1,2-O-isopropylidene-α-D-xylofuranose: Synthesis, electrochemistry and cytotoxicity evaluation. Journal of Organometallic Chemistry, 2014, 774, 26-34.	0.8	7
177	Dye sensitization of a large band gap semiconductor by an iron(III) complex. Transition Metal Chemistry, 2014, 39, 641-646.	0.7	7
178	Novel photoanode architecture for optimal dye-sensitized solar cell performance and its small cell module study. Sustainable Energy and Fuels, 2017, 1, 439-443.	2.5	7
179	Photobleaching of Triphenylamine–Phthalocyanine Entails Mixed Valence-State Triggered Self-Assembled Nanospheres. Journal of Physical Chemistry C, 2018, 122, 19946-19952.	1.5	7
180	A side-on Mn(iii)–peroxo supported by a non-heme pentadentate N3Py2 ligand: synthesis, characterization and reactivity studies. Dalton Transactions, 2021, 50, 2824-2831.	1.6	7

#	Article	IF	CITATIONS
181	Synthesis of meso-substituted porphyrins in room temparature ionic liquid. Journal of Chemical Research, 2008, 2008, 666-668.	0.6	6
182	Ultrafast third order nonlinear optical properties of water soluble zinc-octacarboxy-phthalocyanine. Journal of Porphyrins and Phthalocyanines, 2012, 16, 1015-1023.	0.4	6
183	Photophysical properties of Sn (IV)tetraphenylporphyrin-pyrene dyad with a β-vinyl linker. Journal of Porphyrins and Phthalocyanines, 2015, 19, 288-300.	0.4	6
184	Optical, electrochemical and third-order nonlinear optical studies of triphenylamine substituted zinc phthalocyanine. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1173-1181.	0.4	6
185	Dye anchored counter electrode: novel architecture towards enhanced performance for multiple dye sensitized solar cells. RSC Advances, 2016, 6, 22620-22624.	1.7	6
186	Spin–orbit coupling and Lorentz force enhanced efficiency of TiO ₂ â€based dye sensitized solar cells. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600691.	0.8	6
187	High performance dye anchored counter electrodes with a SPSQ2 sensitizer for dye sensitized solar cell applications. Materials Chemistry Frontiers, 2017, 1, 735-740.	3.2	6
188	Excitation-dependent electron exchange energy and electron transfer dynamics in a series of covalently tethered <i>N</i> , <i>N</i> -bis(4′- <i>tert</i> -butylbiphenyl-4-yl)aniline – [C ₆₀] fullerene dyads <i>via</i> varying π-conjugated spacers. Physical Chemistry Chemical Physics, 2018, 20, 21352-21367.	1.3	6
189	Intramolecular cyclization assisted oxidative addition: synthesis of octahedral cycloplatinated methyl complexes. RSC Advances, 2015, 5, 20295-20301.	1.7	5
190	Substituentâ€Induced Deformed Ni–Porphyrin as an Electrocatalyst for the Electrochemical Conversion of Water into Dioxygen. European Journal of Inorganic Chemistry, 2018, 2018, 1549-1555.	1.0	5
191	Unsymmetrical phenanthro-imidazole/phenothiazine conjugates for optoelectronic applications. Materials Letters, 2019, 253, 384-387.	1.3	5
192	Bulk electrolysis of Zn-phthalocyanine unveils self assembled nanospheres via anion binding. Current Applied Physics, 2020, 20, 777-781.	1.1	5
193	Light-induced energy transfer followed by electron transfer in axially co-ordinated benzothiazole tethered zinc porphyrin-fullero[C ₆₀ /C ₇₀]pyrrolidine triads. Journal of Porphyrins and Phthalocyanines, 2021, 25, 469-483.	0.4	5
194	Tetraphenylethylene-Substituted Bis(thienyl)imidazole (DTITPE), An Efficient Molecular Sensor for the Detection and Quantification of Fluoride Ions. Chemosensors, 2021, 9, 285.	1.8	5
195	Highly Efficient Sulfimidation of 1,3â€Dithianes by Cu(I) Complexes. Synthetic Communications, 2008, 38, 619-625.	1.1	4
196	Femtosecond and Picosecond Optical Nonlinearities of Corroles Studied using Z- Scan Technique. AIP Conference Proceedings, 2011, , .	0.3	4
197	Triphenylamine corrole dyads: Synthesis, characterization and substitution effect on photophysical properties. Journal of Chemical Sciences, 2017, 129, 223-237.	0.7	4
198	Facile synthesis, characterisation and antiâ€inflammatory activities of ferrocenyl ester derivatives of 4â€arylideneâ€5â€imidazolinones. Applied Organometallic Chemistry, 2018, 32, e4021.	1.7	4

#	Article	IF	CITATIONS
199	One-dimensional hollow metal-complex as catalytic electrode for dye-sensitized solar cells. Solar Energy, 2018, 174, 502-507.	2.9	4
200	A novel nonheme manganese(ii) complex for (electro) catalytic oxidation of water. Sustainable Energy and Fuels, 2020, 4, 2656-2660.	2.5	4
201	Photo-induced intramolecular electron transfer in phenoxazine-phthalocyanine donor-acceptor systems. Journal of Porphyrins and Phthalocyanines, 2022, 26, 253-262.	0.4	4
202	Femtosecond and picosecond nonlinear optical studies of Corroles. Proceedings of SPIE, 2012, , .	0.8	3
203	Hâ€bonding Assisted Selfâ€Assembled Oneâ€Dimensional Nanotubes of Redox Active Triphenylamineâ€Benzothiadiazole Derivative. ChemistrySelect, 2017, 2, 4320-4324.	0.7	3
204	Intramolecular electron transfer in porphyrin-anthraquinone donor–acceptor systems with varying molecular bridges. Journal of Porphyrins and Phthalocyanines, 2019, 23, 628-638.	0.4	3
205	Light induced intramolecular energy and electron transfer events in carbazole–corrole and phenothiazine-corrole dyads. Journal of Porphyrins and Phthalocyanines, 2020, 24, 693-704.	0.4	3
206	Bis(4′-tert-butylbiphenyl-4-yl)aniline (BBA)-substituted A3B zinc porphyrin as light harvesting material for conversion of light energy to electricity. Journal of Porphyrins and Phthalocyanines, 2020, 24, 1189-1197.	0.4	3
207	Porphyrin Bearing Phenothiazine Pincers as Hosts for Fullerene Binding via Concave-Convex Complementarity: Synthesis and Complexation Study. New Journal of Chemistry, 0, , .	1.4	3
208	One-Flask Synthesis of Porphyrin Metal Complexes. Journal of Chemical Research, 2007, 2007, 390-391.	0.6	2
209	Synthesis, characterization and photophysical properties of ferrocenyl and mixed sandwich cobaltocenyl ester linked <i>meso</i> -triaryl corrole dyads. Journal of Porphyrins and Phthalocyanines, 2017, 21, 646-657.	0.4	2
210	Self-assembly of a symmetrical dimethoxyphenyl substituted Zn(II) phthalocyanine into nanoparticles with enhanced NIR absorbance for singlet oxygen generation. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 408, 113123.	2.0	2
211	Rationalization of excited state energy transfer in D–π–A porphyrin sensitizers enhancing efficiency in dye-sensitized solar cells. Materials Advances, 0, , .	2.6	2
212	Synthesis and Optoâ€electronic Properties of BODIPY oâ€OPhos Systems. Photochemistry and Photobiology, 2020, 96, 1182-1190.	1.3	1
213	Femtosecond pump probe spectroscopy of novel corroles. , 2012, , .		0
214	Femtosecond to Microsecond Dynamics of Soret-Band Excited Corroles. Journal of Physical Chemistry A, O, , .	1.1	0
215	Femtosecond Transient Absorption Spectroscopy Studies of Ethynylthiophene Functionalized Porphyrin. , 2020, , .		0
216	â€~Axial-bonding' type hybrid porphyrin trimers: Novel multichromophoric arrays for photoinduced electron- and energy transfer. Journal of Chemical Sciences, 1996, 108, 317-317.	0.7	0