Eric J Ward

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/4482805/publications.pdf
Version: 2024-02-01

Best practices for use of stable isotope mixing models in food-web studies. Canadian Journal of
Zoology, 2014, $92,823-835$.

6 A review and comparison of four commonly used Bayesian and maximum likelihood model selection
tools. Ecological Modelling, 2008, 211, 1-10.
Phenological synchronization disrupts trophic interactions between Kodiak brown bears and salmon.
Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10432-10437.

$10 \quad$| Including Source Uncertainty and Prior Information in the Analysis of Stable Isotope Mixing Models. |
| :--- |
| Environmental Science \& Technology, 2010, 44, 4645-4650. |

11 Habitat structure determines resource use by zooplankton in temperate lakes. Ecology Letters, 2011, 14,
$364-372$.

Modelâ€based inference for estimating shifts in species distribution, area occupied and centre of gravity. Methods in Ecology and Evolution, 2016, 7, 990-1002.
2.2

91
-

Complexity is costly: a metaâ€enalysis of parametric and nonâ€parametric methods for shortâ€term population forecasting. Oikos, 2014, 123, 652-661.

The changing physical and ecological meanings of North Pacific Ocean climate indices. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7665-7671.

19	Benefits and risks of diversification for individual fishers. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10797-10802.	3.3	73
20	Increasing hydrologic variability threatens depleted anadromous fish populations. Global Change Biology, 2015, 21, 2500-2509.	4.2	70
21	The importance of spatial models for estimating the strength of density dependence. Ecology, 2015, 96, 1202-1212.	1.5	68
22	Ecosystem context and historical contingency in apex predator recoveries. Science Advances, 2016, 2, el501769.	4.7	61
23	A Fatty Acid Based Bayesian Approach for Inferring Diet in Aquatic Consumers. PLoS ONE, 2015, 10, e0129723.	1.1	60
24	The role of menopause and reproductive senescence in a long-lived social mammal. Frontiers in Zoology, 2009, 6, 4.	0.9	58
25	Using spatiotemporal species distribution models to identify temporally evolving hotspots of species coâ€occurrence. Ecological Applications, 2015, 25, 2198-2209.	1.8	56
26	Improving Bayesian isotope mixing models: a response to Jackson 〈i>etÂal.</i> (2009). Ecology Letters, 2009, 12, E6-8.	3.0	55
27	Giants' shoulders 15Âyears later: lessons, challenges and guidelines in fisheries metaâ€analysis. Fish and Fisheries, 2015, 16, 342-361.	2.7	52

Estimates of Chinook salmon consumption in Washington State inland waters by four marine mammal
predators from 1970 to 2015. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 1173-1194.

[^0]30 A quantitative approach to combine sources in stable isotope mixing models. Ecosphere, 2011, 2, art19.
1.0

45

Accounting for spaceâ $\epsilon^{\prime \prime}$ time interactions in index standardization models. Fisheries Research, 2013, 147,
0.9

40
426-433.
0.7

36
frameworks. Canadian Journal of Fisheries and Aquatic Sciences, 2020, 77, 146-163.
$0.7-36$

Using hierarchical models to estimate stock-specific and seasonal variation in ocean distribution,
33 survivorship, and aggregate abundance of fall run Chinook salmon. Canadian Journal of Fisheries and
$0.7 \quad 34$
Aquatic Sciences, 2019, 76, 95-108.
Thirty years of change and the future of Alaskan fisheries: Shifts in fishing participation and
34 diversification in response to environmental, regulatory and economic pressures. Fish and Fisheries,
2.7

33
2019, 20, 601-619.

Resurgence of an apex marine predator and the decline in prey body size. Proceedings of the National
Academy of Sciences of the United States of America, 2019, 116, 26682-26689.
3.3

32

39	Evaluating ecosystem change as Gulf of Alaska temperature exceeds the limits of preindustrial variability. Progress in Oceanography, 2020, 186, 102393.	1.5	24
40	Redistribution of salmon populations in the northeast Pacific ocean in response to climate. Fish and Fisheries, 2021, 22, 503-517.	2.7	23
41	Quantifying a Novel Climate Through Changes in PDOâ€Climate and PDOâ€Salmon Relationships. Geophysical Research Letters, 2020, 47, e2020GL087972.	1.5	22
42	Improving estimates of species distribution change by incorporating local trends. Ecography, 2021, 44, 427-439.	2.1	22
43	The utility of spatial model-based estimators of unobserved bycatch. ICES Journal of Marine Science, 2019, 76, 255-267.	1.2	21
44	Survival of the fattest: linking body condition to prey availability and survivorship of killer whales. Ecosphere, 2021, 12, e03660.	1.0	21
45	Predatorâ€prey migration phenologies remain synchronised in a warming catchment. Freshwater Biology, 2015, 60, 724-732.	1.2	20

Risky business for a juvenile marine predator? Testing the influence of foraging strategies on size and 46 growth rate under natural conditions. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20170166.
47 Contrasting climate velocity impacts in warm and cool locations show that effects of marine warming are worse in already warmer temperate waters. Fish and Fisheries, 2022, 23, 239-255.

$2.7 \quad 19$Effects of increased specialization on revenue of Alaskan salmon fishers over four decades. Journalof Applied Ecology, 2018, 55, 1082-1091.
48 Effects of increased specialization on revenue of Alaskan salmon fishers over four decades. Journal
1.9
17

Species versus guild level differentiation revealed across the annual cycle by isotopic niche examination. Journal of Animal Ecology, 2014, 83, 470-478.

A century of Chinook salmon consumption by marine mammal predators in the Northeast Pacific
Ocean. Ecological Informatics, 2016, 34, 44-51.
2.3

16
$51 \quad$ Pseudoreplication in genomicâ€scale data sets. Molecular Ecology Resources, 2022, 22, 503-518.
2.2

16
57 Spaceâ€time investigation of the effects of fishing on fish populations. Ecological Applications, 2016, 26,
$392-406$.

58 Longấ€distance migration of prey synchronizes demographic rates of top predators across broad spatial
$1.0 \quad 10$
scales. Ecosphere, 2016, 7, e01276.
$0.9 \quad 10$
predictions. PeerJ, 2022, 10, e12783.
59 The shadow model: how and why small choices in spatially explicit species distribution models affect

Hidden Markov models reveal temporal patterns and sex differences in killer whale behavior.
Scientific Reports, 2019, 9, 14951.
$1.6 \quad 9$

61	Estimating the stock size of harbor seals (Phoca vitulina richardii) in the inland waters of Washington State using line-transect methods. PLoS ONE, 2021, 16, e0241254.	1.1	9
62	Nonâ€stationary and interactive effects of climate and competition on pink salmon productivity. Global Change Biology, 2022, 28, 2026-2040.	4.2	9
63	A stateâ $€^{\prime \prime}$ space mixture approach for estimating catastrophic events in time series data. Canadian Journal of Fisheries and Aquatic Sciences, 2007, 64, 899-910.	0.7	8
64	Applying time series models with spatial correlation to identify the scale of variation in habitat metrics related to threatened coho salmon (Oncorhynchus kisutch) in the Pacific Northwest. Canadian Journal of Fisheries and Aquatic Sciences, 2012, 69, 1773-1782.	0.7	8
65	Evaluating the Accuracy and Precision of Multiple Abundance Estimators Using Stateâ€Space Models: A Case Study for a Threatened Population of Chinook Salmon in Johnson Creek, Idaho. North American Journal of Fisheries Management, 2014, 34, 945-954.	0.5	8
66	Stable isotope signatures in historic harbor seal bone link food webấassimilated carbon and nitrogen resources to a century of environmental change. Global Change Biology, 2021, 27, 2328-2342.	4.2	8
67	Applying spatiotemporal models to monitoring data to quantify fish population responses to the Deepwater Horizon oil spill in the Gulf of Mexico. Environmental Monitoring and Assessment, 2018, 190, 530.	1.3	7

68 Tracking and forecasting community responses to climate perturbations in the California Current
Ecosystem. , 2022, 1, e0000014.

Spatio-temporal models reveal subtle changes to demersal communities following the Exxon Valdez
1.2
oil spill. ICES Journal of Marine Science, 2018, 75, 287-297.

Dynamic spatial heterogeneity reveals interdependence of marine faunal density and fishery removals.
70 Ecological Indicators, 2019, 107, 105585.
2.6

6

Assessing long-term changes in sex ratios of Pacific herring in Prince William Sound, Alaska. Fisheries
$71 \quad \begin{aligned} & \text { Assessing } \\ & \text { Research, 2019, 211, 300-308. }\end{aligned}$
0.95

Smoothed dynamic factor analysis for identifying trends in multivariate time series. Methods in
Ecology and Evolution, 2022, 13, 908-918.

[^0]: 29
 Diminished Reproductive Success of Steelhead from a Hatchery Supplementation Program (Little Sheep) Tj ETQq1 $10.6 .784314 \mathrm{~s}_{1} \mathrm{rgBT} /$

