Young-Bin Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/448271/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bimetallic copper cobalt selenide nanowire-anchored woven carbon fiber-based structural supercapacitors. Chemical Engineering Journal, 2019, 355, 551-559.	12.7	117
2	Woven Kevlar Fiber/Polydimethylsiloxane/Reduced Graphene Oxide Composite-Based Personal Thermal Management with Freestanding Cu–Ni Core–Shell Nanowires. Nano Letters, 2018, 18, 6731-6739.	9.1	104
3	Multifunctional CuO nanowire embodied structural supercapacitor based on woven carbon fiber/ionic liquid–polyester resin. Composites Part A: Applied Science and Manufacturing, 2016, 87, 256-262.	7.6	95
4	Biomechanical Energyâ€Harvesting Wearable Textileâ€Based Personal Thermal Management Device Containing Epitaxially Grown Aligned Agâ€Tippedâ€Ni <i>_x</i> Co _{1â^²} <i>_x</i> Se Nanowires/Reduced Graphene Oxide. Advanced Functional Materials, 2019, 29, 1903144.	14.9	80
5	Recent development and challenges of multifunctional structural supercapacitors for automotive industries. International Journal of Energy Research, 2017, 41, 1397-1411.	4.5	79
6	The effects of plasma surface treatment on the mechanical properties of polycarbonate/carbon nanotube/carbon fiber composites. Composites Part B: Engineering, 2019, 160, 436-445.	12.0	75
7	Multifunctional enhancement of woven carbon fiber/ZnO nanotube-based structural supercapacitor and polyester resin-domain solid-polymer electrolytes. Chemical Engineering Journal, 2017, 325, 672-680.	12.7	66
8	Triboelectric-nanogenerator-integrated structural supercapacitor based on highly active P-doped branched Cu–Mn selenide nanowires for efficient energy harvesting and storage. Nano Energy, 2020, 73, 104754.	16.0	63
9	Processing and mechanical characterization of ZnO/polyester woven carbon–fiber composites with different ZnO concentrations. Composites Part A: Applied Science and Manufacturing, 2013, 55, 152-160.	7.6	62
10	Characterization of resistive heating and thermoelectric behavior of discontinuous carbon fiber-epoxy composites. Composites Part B: Engineering, 2016, 90, 37-44.	12.0	62
11	Enhancement in mechanical properties of polyamide 66-carbon fiber composites containing graphene oxide-carbon nanotube hybrid nanofillers synthesized through in situ interfacial polymerization. Composites Part A: Applied Science and Manufacturing, 2020, 135, 105938.	7.6	58
12	Electromagnetic interference shielding of composites consisting of a polyester matrix and carbon nanotube-coated fiber reinforcement. Composites Part A: Applied Science and Manufacturing, 2013, 50, 73-80.	7.6	53
13	Growth of aligned ZnO nanorods on woven Kevlar® fiber and its performance in woven Kevlar® fiber/polyester composites. Composites Part A: Applied Science and Manufacturing, 2015, 78, 284-293.	7.6	50
14	Controlled growth of CuO nanowires on woven carbon fibers and effects on the mechanical properties of woven carbon fiber/polyester composites. Composites Part A: Applied Science and Manufacturing, 2015, 69, 56-63.	7.6	50
15	Piezoresistive behavior and multi-directional strain sensing ability of carbon nanotube–graphene nanoplatelet hybrid sheets. Smart Materials and Structures, 2013, 22, 015013.	3.5	48
16	Effects of process parameters and surface treatments of graphene nanoplatelets on the crystallinity and thermomechanical properties of polyamide 6 composite fibers. Composites Part B: Engineering, 2016, 100, 220-227.	12.0	40
17	Microwave-synthesized freestanding iron-carbon nanotubes on polyester composites of woven Kevlar fibre and silver nanoparticle-decorated graphene. Scientific Reports, 2017, 7, 40386.	3.3	38
18	Ultra-high-speed processing of nanomaterial-reinforced woven carbon fiber/polyamide 6 composites using reactive thermoplastic resin transfer molding. Composites Part B: Engineering, 2018, 143, 36-46.	12.0	38

Young-Bin Park

#	Article	IF	CITATIONS
19	Microwave absorption and mechanical performance of α-MnO2 nanostructures grown on woven Kevlar fiber/reduced graphene oxide-polyaniline nanofiber array-reinforced polyester resin composites. Composites Part B: Engineering, 2018, 140, 123-132.	12.0	38
20	Characterization of thermoelectric properties of multifunctional multiscale composites and fiber-reinforced composites for thermal energy harvesting. Composites Part B: Engineering, 2016, 92, 202-209.	12.0	37
21	Fabrication and Synthesis of Highly Ordered Nickel Cobalt Sulfide Nanowire-Grown Woven Kevlar Fiber/Reduced Graphene Oxide/Polyester Composites. ACS Applied Materials & Interfaces, 2017, 9, 36311-36319.	8.0	37
22	Structural health monitoring of carbon-material-reinforced polymers using electrical resistance measurement. International Journal of Precision Engineering and Manufacturing - Green Technology, 2016, 3, 311-321.	4.9	36
23	Influence of hybrid graphene oxide-carbon nanotube as a nano-filler on the interfacial interaction in nylon composites prepared by in situ interfacial polymerization. Carbon, 2018, 140, 324-337.	10.3	36
24	Synergistic interfacial reinforcement of carbon fiber/polyamide 6 composites using carbon-nanotube-modified silane coating on ZnO-nanorod-grown carbon fiber. Composites Science and Technology, 2018, 165, 362-372.	7.8	35
25	Interlaminar resistive heating behavior of woven carbon fiber composite laminates modified with ZnO nanorods. Composites Science and Technology, 2014, 100, 83-91.	7.8	32
26	Highly wettable CuO:graphene oxide core-shell porous nanocomposites for enhanced critical heat flux. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 1756-1766.	1.8	31
27	Bioinspired, High-Sensitivity Mechanical Sensors Realized with Hexagonal Microcolumnar Arrays Coated with Ultrasonic-Sprayed Single-Walled Carbon Nanotubes. ACS Applied Materials & Interfaces, 2020, 12, 18813-18822.	8.0	29
28	Prediction of thermal conductivities of carbon-containing fiber-reinforced and multiscale hybrid composites. Composites Part B: Engineering, 2018, 133, 232-239.	12.0	28
29	Electrical thermal heating and piezoresistive characteristics of hybrid CuO–woven carbon fiber/vinyl ester composite laminates. Composites Part A: Applied Science and Manufacturing, 2016, 85, 103-112.	7.6	26
30	Interphase strengthening of carbon fiber/polyamide 6 composites through mixture of sizing agent and reduced graphene oxide coating. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106521.	7.6	26
31	Carbon Nanocomposite Based Mechanical Sensing and Energy Harvesting. International Journal of Precision Engineering and Manufacturing - Green Technology, 2020, 7, 247-267.	4.9	25
32	In situ assessment of carbon nanotube flow and filtration monitoring through glass fabric using electrical resistance measurement. Composites Part A: Applied Science and Manufacturing, 2016, 90, 137-146.	7.6	24
33	Deformation and interlaminar crack propagation sensing in carbon fiber composites using electrical resistance measurement. Composite Structures, 2019, 216, 142-150.	5.8	24
34	In situ process monitoring of hierarchical micro-/nano-composites using percolated carbon nanotube networks. Composites Part A: Applied Science and Manufacturing, 2016, 84, 281-291.	7.6	20
35	Large pulsed electron beam (LPEB)-processed woven carbon fiber/ZnO nanorod/polyester resin composites. Composites Science and Technology, 2014, 102, 106-112.	7.8	19
36	Porous spongy FexCo1â^'xP nanostructure and MXene infused self-powered flexible textile based personal thermoregulatory device. Nano Energy, 2021, 86, 106042.	16.0	18

Young-Bin Park

#	Article	IF	CITATIONS
37	Fabrication of the piezoresistive sensor using the continuous laser-induced nanostructure growth for structural health monitoring. Carbon, 2019, 152, 376-387.	10.3	16
38	Multidimensional wearable self-powered personal thermal management with scalable solar heating and a triboelectric nanogenerator. Nano Energy, 2022, 98, 107323.	16.0	16
39	Smart gating of the flexible Ag@CoxMo1-xP and rGO-loaded composite based personal thermal management device inspired by the neuroanatomic circuitry of endotherms. Chemical Engineering Journal, 2021, 421, 127746.	12.7	15
40	Modeling, processing, and characterization of exfoliated graphite nanoplatelet-nylon 6 composite fibers. Composites Part B: Engineering, 2014, 66, 511-517.	12.0	14
41	Strain sensing and progressive failure monitoring of glass-fiber-reinforced composites using percolated carbon nanotube networks. Functional Composites and Structures, 2020, 2, 015006.	3.4	13
42	Interfacial control through ZnO nanorod growth on plasma-treated carbon fiber for multiscale reinforcement of carbon fiber/polyamide 6 composites. Materials Today Communications, 2018, 17, 438-449.	1.9	12
43	Enhanced Mechanical and Antibacterial Properties of Nanocomposites Based on Poly(vinyl Alcohol) and Biopolymer-Derived Reduced Graphene Oxide. Polymers, 2021, 13, 615.	4.5	11
44	Exfoliated Graphite Nanoplatelet-Carbon Nanotube Hybrid Composites for Compression Sensing. ACS Omega, 2020, 5, 2630-2639.	3.5	10
45	Unidirectional spreadâ€tow carbon fiber/polypropylene composites reinforced with mechanically aligned multiâ€walled carbon nanotubes and exfoliated graphite nanoplatelets. Polymer Composites, 2018, 39, E1251.	4.6	7
46	Hierarchically structured ZnO nanorod-carbon fiber composites as ultrathin, flexible, highly sensitive triboelectric sensors. Smart Materials and Structures, 2020, 29, 025002.	3.5	7
47	Real-time in situ monitoring of manufacturing process and CFRP quality by relative resistance change measurement. Polymer Testing, 2020, 85, 106416.	4.8	7
48	Interfacial enhancements between a three-dimensionally printed Honeycomb-Truss core and woven carbon fiber/polyamide-6 facesheets in sandwich-structured composites. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106534.	7.6	7
49	Multilayered Composites with Modulus Gradient for Enhanced Pressure—Temperature Sensing Performance. Sensors, 2021, 21, 4752	3.8	5
50	Synergistic Mechanical Reinforcement of Woven Carbon Fiber/Polypropylene Composites Using Plasma Treatment and Nanoclay. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 595-609.	4.9	4