Juan Pedro Vargas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4482590/publications.pdf

Version: 2024-02-01

41 papers

2,069 citations

20 h-index 35 g-index

42 all docs 42 docs citations

times ranked

42

1259 citing authors

#	Article	IF	CITATIONS
1	Conservation of Spatial Memory Function in the Pallial Forebrain of Reptiles and Ray-Finned Fishes. Journal of Neuroscience, 2002, 22, 2894-2903.	3.6	280
2	Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Research Bulletin, 2002, 57, 499-503.	3.0	238
3	The effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish. Brain Research Bulletin, 2002, 57, 397-399.	3.0	228
4	Spatial learning and memory deficits after telencephalic ablation in goldfish trained in place and turn maze procedures Behavioral Neuroscience, 1996, 110, 965-980.	1.2	129
5	Encoding of Geometric and Featural Spatial Information by Goldfish (Carassius auratus) Journal of Comparative Psychology (Washington, D C: 1983), 2004, 118, 206-216.	0.5	120
6	Hippocampal formation is required for geometric navigation in pigeons. European Journal of Neuroscience, 2004, 20, 1937-1944.	2.6	118
7	Performance of goldfish trained in allocentric and egocentric maze procedures suggests the presence of a cognitive mapping system in fishes. Learning and Behavior, 1994, 22, 409-420.	3.4	116
8	Spatial learning-induced increase in the argyrophilic nucleolar organizer region of dorsolateral telencephalic neurons in goldfish. Brain Research, 2000, 865, 77-84.	2.2	106
9	Emotional and spatial learning in goldfish is dependent on different telencephalic pallial systems. European Journal of Neuroscience, 2005, 21, 2800-2806.	2.6	92
10	What are the functions of fish brain pallium?. Brain Research Bulletin, 2009, 79, 436-440.	3.0	87
11	Spatial and non-spatial learning in turtles: the role of medial cortex. Behavioural Brain Research, 2003, 143, 109-120.	2.2	81
12	Telencephalon and geometric space in goldfish. European Journal of Neuroscience, 2006, 24, 2870-2878.	2.6	62
13	Spatial learning in turtles. Animal Cognition, 2001, 4, 49-59.	1.8	54
14	Involvement of the telencephalon in spaced-trial avoidance learning in the goldfish (Carassius) Tj ETQq0 0 0 rgBT	Överlock	₹ 1 <mark>93</mark> Tf 50 222
15	Place and cue learning in turtles. Learning and Behavior, 2000, 28, 360-372.	3.4	47
16	Spatial learning and goldfish telencephalon NMDA receptors. Neurobiology of Learning and Memory, 2006, 85, 252-262.	1.9	31
17	Spatial reversal learning deficit after medial cortex lesion in turtles. Neuroscience Letters, 2003, 341, 197-200.	2.1	29
18	The effects of a changing ambient magnetic field on single-unit activity in the homing pigeon hippocampus. Brain Research Bulletin, 2006, 70, 158-164.	3.0	27

#	Article	IF	CITATIONS
19	Detecting Attention Levels in ADHD Children with a Video Game and the Measurement of Brain Activity with a Single-Channel BCI Headset. Sensors, 2021, 21, 3221.	3.8	27
20	Effects of context novelty vs. familiarity on latent inhibition with a conditioned taste aversion procedure. Behavioural Processes, 2011, 86, 242-249.	1.1	23
21	Animal Models of Maladaptive Traits: Disorders in Sensorimotor Gating and Attentional Quantifiable Responses as Possible Endophenotypes. Frontiers in Psychology, 2016, 7, 206.	2.1	16
22	Sign and goal tracker rats process differently the incentive salience of a conditioned stimulus. PLoS ONE, 2019, 14, e0223109.	2.5	15
23	Ventral subiculum involvement in latent inhibition context specificity. Physiology and Behavior, 2011, 102, 414-420.	2.1	14
24	Eye-movement recording in freely moving animals. Physiology and Behavior, 2001, 72, 455-460.	2.1	12
25	Taste memory trace disruption by AP5 administration in basolateral amygdala. NeuroReport, 2010, 21, 99-103.	1.2	9
26	Involvement of D1 and D2 dopamine receptor in the retrieval processes in latent inhibition. Psychopharmacology, 2015, 232, 4337-4346.	3.1	8
27	Neural basis of the spatial navigation based on geometric cues. Behavioural Brain Research, 2011, 225, 367-372.	2.2	7
28	Differential implication of dorsolateral and dorsomedial srtiatum in encoding and recovery processes of latent inhibition. Neurobiology of Learning and Memory, 2014, 111, 19-25.	1.9	7
29	Different ways of encoding geometric information by goldfish (Carassius auratus) Journal of Comparative Psychology (Washington, D C: 1983), 2005, 119, 458-460.	0.5	6
30	c-Fos positive nucleus reveals that contextual specificity of latent inhibition is dependent of insular cortex. Brain Research Bulletin, 2014, 108, 74-79.	3.0	6
31	Effects on goal directed behavior and habit in two animal models of Parkinson's disease. Neurobiology of Learning and Memory, 2020, 169, 107190.	1.9	6
32	Different involvement of medial prefrontal cortex and dorso-lateral striatum in automatic and controlled processing of a future conditioned stimulus. PLoS ONE, 2017, 12, e0189630.	2.5	5
33	Influence of distal and proximal cues in encoding geometric information. Animal Cognition, 2011, 14, 351-358.	1.8	4
34	Ciclo de mejora docente en la asignatura de psicologÃa de la atención de la percepción del grado en psicologÃa. Jornadas De FormaciÓn E InnovaciÓn Docente Del Profesorado, 2018, , 1773-1790.	0.0	3
35	Inhibition of brain NOS activity impair spatial learning acquisition in fish. Brain Research Bulletin, 2020, 164, 29-36.	3.0	2
36	Traditional Scales Diagnosis and Endophenotypes in Attentional Deficits Disorders: Are We on the Right Track?. , 0 , , .		1

#	Article	IF	CITATIONS
37	The Basal Ganglia Contribution to Controlled and Automatic Processing. Innovations in Cognitive Neuroscience, 2016, , 243-259.	0.3	O
38	Aplicaci \tilde{A}^3 n de un Ciclo de Mejora en el aula (CIMA) en la asignatura de Psicolog \tilde{A} a de la Percepci \tilde{A}^3 n. , 0, , 2164-2180.		0
39	Surprise-induced enhancements in the associability of Pavlovian cues facilitate learning across behavior systems Behavioral Neuroscience, 2022, 136, 285-292.	1.2	O
40	Innovación docente en PsicologÃa de la Atención y de la PercepciónÂ. Jornadas De FormaciÓn E InnovaciÓn Docente Del Profesorado, 2020, , 1911-1927.	0.0	0
41	Adaptación de un Ciclo de Mejora en el Aula (CIMA) centrado en las ideas previas resistentes. , 0, , 2819-2831.		0