
Valdis Krumins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4482436/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative Analyses of the Microbial Communities Inhabiting Coal Mining Waste Dump and an Adjacent Acid Mine Drainage Creek. Microbial Ecology, 2019, 78, 651-664.	1.4	29
2	Arsenic contamination influences microbial community structure and putative arsenic metabolism gene abundance in iron plaque on paddy rice root. Science of the Total Environment, 2019, 649, 405-412.	3.9	48
3	A Combination of Stable Isotope Probing, Illumina Sequencing, and Co-occurrence Network to Investigate Thermophilic Acetate- and Lactate-Utilizing Bacteria. Microbial Ecology, 2018, 75, 113-122.	1.4	32
4	Paddy soil microbial communities driven by environment- and microbe-microbe interactions: A case study of elevation-resolved microbial communities in a rice terrace. Science of the Total Environment, 2018, 612, 884-893.	3.9	70
5	Analysis of airborne microbial communities using 16S ribosomal RNA: Potential bias due to air sampling stress. Science of the Total Environment, 2018, 621, 939-947.	3.9	18
6	Sewer Sediment Bacterial Communities Suggest Potential to Transform Persistent Organic Pollutants. Water Environment Research, 2018, 90, 2022-2029.	1.3	6
7	Rhizosphere Microbial Response to Multiple Metal(loid)s in Different Contaminated Arable Soils Indicates Crop-Specific Metal-Microbe Interactions. Applied and Environmental Microbiology, 2018, 84,	1.4	47
8	Bacterial Survival Strategies in an Alkaline Tailing Site and the Physiological Mechanisms of Dominant Phylotypes As Revealed by Metagenomic Analyses. Environmental Science & Technology, 2018, 52, 13370-13380.	4.6	112
9	Using positive matrix factorization to investigate microbial dehalogenation of chlorinated benzenes in groundwater at a historically contaminated site. Chemosphere, 2018, 211, 515-523.	4.2	8
10	Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic. Environmental Pollution, 2017, 221, 244-255.	3.7	60
11	Response of Soil Microbial Communities to Elevated Antimony and Arsenic Contamination Indicates the Relationship between the Innate Microbiota and Contaminant Fractions. Environmental Science & Technology, 2017, 51, 9165-9175.	4.6	133
12	Correlating microbial community profiles with geochemical conditions in a watershed heavily contaminated by an antimony tailing pond. Environmental Pollution, 2016, 215, 141-153.	3.7	48
13	Microbial diversity and community structure in an antimony-rich tailings dump. Applied Microbiology and Biotechnology, 2016, 100, 7751-7763.	1.7	55
14	Remediation of antimony-rich mine waters: Assessment of antimony removal and shifts in the microbial community of an onsite field-scale bioreactor. Environmental Pollution, 2016, 215, 213-222.	3.7	37
15	Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage. Applied Microbiology and Biotechnology, 2016, 100, 8523-8535.	1.7	40
16	Profiling microbial community in a watershed heavily contaminated by an active antimony (Sb) mine in Southwest China. Science of the Total Environment, 2016, 550, 297-308.	3.9	104
17	Anaerobic Degradation of Aromatic Compounds. , 2015, , 5.1.3-1-5.1.3-14.		1
18	Herbivory and Stoichiometric Feedbacks to Primary Production. PLoS ONE, 2015, 10, e0129775.	1.1	16

#	Article	IF	CITATIONS
19	Development of a dual-internal-reference technique to improve accuracy when determining bacterial 16S rRNA:16S rRNA gene ratio with application to Escherichia coli liquid and aerosol samples. Journal of Microbiological Methods, 2015, 117, 113-121.	0.7	5
20	Microbial Dechlorination of Polychlorinated Biphenyls, Dibenzo- <i>p</i> -dioxins, and -furans at the Portland Harbor Superfund Site, Oregon, USA. Environmental Science & Technology, 2015, 49, 7227-7235.	4.6	23
21	Identifying the Correct Biotransformation Model from Polychlorinated Biphenyl and Dioxin Dechlorination Batch Studies. Environmental Engineering Science, 2014, 31, 548-555.	0.8	2
22	Substrate-Dependent rRNA Production in an Airborne Bacterium. Environmental Science and Technology Letters, 2014, 1, 376-381.	3.9	36
23	Dissolved inorganic carbon and alkalinity fluxes from coastal marine sediments: model estimates for different shelf environments and sensitivity to global change. Biogeosciences, 2013, 10, 371-398.	1.3	142
24	Methane production from horse manure and stall waste with softwood bedding. Bioresource Technology, 2012, 112, 42-50.	4.8	46
25	The effect of co-substrate activation on indigenous and bioaugmented PCB dechlorinating bacterial communities in sediment microcosms. Applied Microbiology and Biotechnology, 2011, 89, 2005-2017.	1.7	48
26	PCB dechlorination enhancement in Anacostia River sediment microcosms. Water Research, 2009, 43, 4549-4558.	5.3	71
27	Application of ATP bioluminescence method to characterize performance of bioaerosol sampling devices. Journal of Aerosol Science, 2009, 40, 113-121.	1.8	43
28	Retention of Inactivated Bioaerosols and Ethene in a Rotating Bioreactor Constructed for Bioaerosol Activity Studies. Clean - Soil, Air, Water, 2008, 36, 593-600.	0.7	9
29	Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses. Advances in Space Research, 2004, 34, 1470-1476.	1.2	18
30	Costs and Benefits of Bioreactors. , 2002, , .		4
31	The Effect of Microbial Growth on Feed Stability and Delivery in a Denitrifying Fixed Bed Reactor Designed for Space Flight to Recycle Graywater. , 2002, , .		2
32	Effect of hydraulic retention time on inorganic nutrient recovery and biodegradable organics removal in a biofilm reactor treating plant biomass leachate. Bioresource Technology, 2002, 85, 243-248.	4.8	6
33	Part-day ozonation for nitrogen and organic carbon control in recirculating aquaculture systems. Aquacultural Engineering, 2001, 24, 231-241.	1.4	34
34	Ozone's effects on power-law particle size distribution in recirculating aquaculture systems. Aquacultural Engineering, 2001, 25, 13-24.	1.4	20
35	Bioprocessing to Recover Crop Nutrients from ALS Solid Wastes: A Two-Stage Solid-Liquid Separation System for Removal of Particulates from Bioreactor â€~Broth'. , 2001, , .		2
36	Fluid velocity distribution in nitrifying trickling filters: mathematical model and NMR calibration. Water Research, 2000, 34, 2337-2345.	5.3	10

#	Article	IF	CITATIONS
37	Continuous Leaching (Bio)reactor. , 0, , .		1