List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4482207/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Senescence-Induced Staygreen Protein Regulates Chlorophyll Degradation. Plant Cell, 2007, 19, 1649-1664.	3.1	475
2	Rice Chlorina-1 and Chlorina-9 encode ChlD and Chll subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development. Plant Molecular Biology, 2006, 62, 325-337.	2.0	246
3	Rice <i>Virescent3</i> and <i>Stripe1</i> Encoding the Large and Small Subunits of Ribonucleotide Reductase Are Required for Chloroplast Biogenesis during Early Leaf Development Â. Plant Physiology, 2009, 150, 388-401.	2.3	201
4	Antioxidative activities of bran extracts from twenty one pigmented rice cultivars. Food Chemistry, 2006, 94, 613-620.	4.2	195
5	The rice <i>narrow leaf2</i> and <i>narrow leaf3</i> loci encode <scp>WUSCHEL</scp> â€related homeobox 3 <scp>A</scp> (<scp>O</scp> s <scp>WOX</scp> 3 <scp>A</scp>) and function in leaf, spikelet, tiller and lateral root development. New Phytologist, 2013, 198, 1071-1084.	3.5	174
6	Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species. Scientific Reports, 2015, 5, 15655.	1.6	169
7	<i>SPL28</i> encodes a clathrinâ€associated adaptor protein complex 1, medium subunit μ1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (<i>Oryza sativa</i>). New Phytologist, 2010, 185, 258-274.	3.5	162
8	The rice <i>faded green leaf</i> locus encodes protochlorophyllide oxidoreductaseÂB and is essential for chlorophyll synthesis under high light conditions. Plant Journal, 2013, 74, 122-133.	2.8	153
9	High-resolution mapping of two rice brown planthopper resistance genes, Bph20(t) and Bph21(t), originating from Oryza minuta. Theoretical and Applied Genetics, 2009, 119, 1237-1246.	1.8	147
10	The <scp>BEL</scp> 1â€ŧype homeobox gene <i><scp>SH</scp>5</i> induces seed shattering by enhancing abscissionâ€zone development and inhibiting lignin biosynthesis. Plant Journal, 2014, 79, 717-728.	2.8	127
11	Fine mapping and candidate gene analysis of dense and erect panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2011, 122, 1439-1449.	1.8	112
12	Characterization and Mapping of a Shattering Mutant in Rice That Corresponds to a Block of Domestication Genes. Genetics, 2006, 173, 995-1005.	1.2	108
13	Inactivation of the <i>UGPase1</i> gene causes genic male sterility and endosperm chalkiness in rice (<i>Oryza sativa</i> L.). Plant Journal, 2008, 54, 190-204.	2.8	98
14	KNOX Protein OSH15 Induces Grain Shattering by Repressing Lignin Biosynthesis Genes. Plant Physiology, 2017, 174, 312-325.	2.3	93
15	Inactivation of the CTD phosphatase-like gene <i>OsCPL1</i> enhances the development of the abscission layer and seed shattering in rice. Plant Journal, 2010, 61, 96-106.	2.8	89
16	The rice zebra3 (z3) mutation disrupts citrate distribution and produces transverse dark-green/green variegation in mature leaves. Rice, 2018, 11, 1.	1.7	87
17	Map-based cloning of the ERECT PANICLE 3 gene in rice. Theoretical and Applied Genetics, 2009, 119, 1497-1506.	1.8	81
18	Mutation of <i>SPOTTED LEAF3</i> (<i>SPL3</i>) impairs abscisic acid-responsive signalling and delays leaf senescence in rice. Journal of Experimental Botany, 2015, 66, 7045-7059.	2.4	70

#	Article	IF	CITATIONS
19	ZEBRA-NECROSIS, a thylakoid-bound protein, is critical for the photoprotection of developing chloroplasts during early leaf development. Plant Journal, 2010, 62, 713-725.	2.8	67
20	Molecular Aspect of Good Eating Quality Formation in Japonica Rice. PLoS ONE, 2011, 6, e18385.	1.1	62
21	Teosinte Branched 1 modulates tillering in rice plants. Plant Cell Reports, 2012, 31, 57-65.	2.8	61
22	The rice (Oryza sativa) Blast Lesion Mimic Mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiology and Biochemistry, 2005, 43, 397-406.	2.8	60
23	Proteomics Analysis of Rice Lesion Mimic Mutant (<i>spl</i> 1) Reveals Tightly Localized Probenazole-Induced Protein (PBZ1) in Cells Undergoing Programmed Cell Death. Journal of Proteome Research, 2008, 7, 1750-1760.	1.8	55
24	PCR Marker-Based Evaluation of the Eating Quality of <i>Japonica</i> Rice (Oryza sativa L.). Journal of Agricultural and Food Chemistry, 2009, 57, 2754-2762.	2.4	51
25	Antiallergic Activities of Pigmented Rice Bran Extracts in Cell Assays. Journal of Food Science, 2007, 72, S719-S726.	1.5	48
26	Identification of QTLs for Seed Germination Capability after Various Storage Periods Using Two RIL Populations in Rice. Molecules and Cells, 2011, 31, 385-392.	1.0	48
27	Leaf Variegation in the Rice zebra2 Mutant Is Caused by Photoperiodic Accumulation of Tetra-Cis-Lycopene and Singlet Oxygen. Molecules and Cells, 2012, 33, 87-98.	1.0	43
28	Identification of Active Transposon dTok , a Member of the hAT Family, in Rice. Plant and Cell Physiology, 2006, 47, 1473-1483.	1.5	42
29	Identification and quantification of flavonoids in yellow grain mutant of rice (Oryza sativa L.). Food Chemistry, 2018, 241, 154-162.	4.2	38
30	Pyrophosphateâ€fructose 6â€phosphate 1â€phosphotransferase (<scp>PFP</scp> 1) regulates starch biosynthesis and seed development via heterotetramer formation in rice (<i>Oryza sativa</i> L.). Plant Biotechnology Journal, 2020, 18, 83-95.	4.1	38
31	Differential Expression of Defense/Stress-Related Marker Proteins in Leaves of a Unique Rice Blast Lesion Mimic Mutant (blm). Journal of Proteome Research, 2006, 5, 2586-2598.	1.8	37
32	Molecular mapping of quantitative trait loci for zinc toxicity tolerance in rice seedling (Oryza sativa) Tj ETQq0 () 0 rgBT /Ov	verlock 10 Tf 5
33	New Genetic Loci Associated with Preharvest Sprouting and Its Evaluation Based on the Model Equation in Rice. Frontiers in Plant Science, 2017, 8, 1393.	1.7	32
34	Genome-wide analyses of late pollen-preferred genes conserved in various rice cultivars and functional identification of a gene involved in the key processes of late pollen development. Rice, 2018, 11, 28.	1.7	32
35	Identification of Quantitative Trait Loci Associated with Rice Eating Quality Traits Using a Population of Recombinant Inbred Lines Derived from a Cross between Two Temperate japonica Cultivars. Molecules and Cells, 2011, 31, 437-446.	1.0	31
36	Quantitative Trait Loci for Cold Tolerance of Rice Recombinant Inbred Lines in Low Temperature Environments. Molecules and Cells, 2011, 32, 579-588.	1.0	27

#	Article	IF	CITATIONS
37	Single Nucleotide Polymorphisms and Haplotype Diversity in Rice Sucrose Synthase 3. Journal of Heredity, 2011, 102, 735-746.	1.0	25
38	Chromatin interacting factor Os <scp>VIL</scp> 2 increases biomass and rice grain yield. Plant Biotechnology Journal, 2019, 17, 178-187.	4.1	25
39	Tiller formation in rice is altered by overexpression of OsIAGLU gene encoding an IAA-conjugating enzyme or exogenous treatment of free IAA. Journal of Plant Biology, 2012, 55, 429-435.	0.9	24
40	Key DNA Markers for Predicting Heterosis in F1 Hybrids of japonica Rice. Breeding Science, 2004, 54, 389-397.	0.9	23
41	Fine Mapping and Candidate Gene Analysis of the Floury Endosperm Gene, FLO(a), in Rice. Molecules and Cells, 2010, 29, 167-174.	1.0	23
42	Influence of Multi-Gene Allele Combinations on Grain Size of Rice and Development of a Regression Equation Model to Predict Grain Parameters. Rice, 2015, 8, 33.	1.7	23
43	Fine mapping and candidate gene analysis of hwh1 and hwh2, a set of complementary genes controlling hybrid breakdown in rice. Theoretical and Applied Genetics, 2008, 116, 1117-1127.	1.8	22
44	Development of SNP-based CAPS and dCAPS markers in eight different genes involved in starch biosynthesis in rice. Molecular Breeding, 2009, 24, 93-101.	1.0	22
45	Development and application of indica–japonica SNP assays using the Fluidigm platform for rice genetic analysis and molecular breeding. Molecular Breeding, 2020, 40, 1.	1.0	22
46	Molecular characterization and physico-chemical analysis of a new giant embryo mutant allele (ge t) in rice (Oryza sativa L.). Genes and Genomics, 2009, 31, 277-282.	0.5	20
47	The rice bright green leaf (bgl) locus encodes OsRopGEF10, which activates the development of small cuticular papillae on leaf surfaces. Plant Molecular Biology, 2011, 77, 631-641.	2.0	20
48	Identification of nucleosome assembly protein 1 (NAP1) as an interacting partner of plant ribosomal protein S6 (RPS6) and a positive regulator of rDNA transcription. Biochemical and Biophysical Research Communications, 2015, 465, 200-205.	1.0	20
49	Identification of a Spotted Leaf Sheath Gene Involved in Early Senescence and Defense Response in Rice. Frontiers in Plant Science, 2018, 9, 1274.	1.7	20
50	The Rice Rolled Fine Striped (RFS) CHD3/Mi-2 Chromatin Remodeling Factor Epigenetically Regulates Genes Involved in Oxidative Stress Responses During Leaf Development. Frontiers in Plant Science, 2018, 9, 364.	1.7	20
51	Isolation and Characterization of a Dominant Dwarf Gene, D-h, in Rice. PLoS ONE, 2014, 9, e86210.	1.1	20
52	Sugary Endosperm is Modulated by Starch Branching Enzyme IIa in Rice (Oryza sativa L.). Rice, 2017, 10, 33.	1.7	19
53	The Rice SPOTTED LEAF4 (SPL4) Encodes a Plant Spastin That Inhibits ROS Accumulation in Leaf Development and Functions in Leaf Senescence. Frontiers in Plant Science, 2018, 9, 1925.	1.7	19
54	Novel allelic variant of Lpa1 gene associated with a significant reduction in seed phytic acid content in rice (Oryza sativa L.). PLoS ONE, 2019, 14, e0209636.	1.1	19

#	Article	IF	CITATIONS
55	Evaluating Genotype × Environment Interactions of Yield Traits and Adaptability in Rice Cultivars Grown under Temperate, Subtropical and Tropical Environments. Agriculture (Switzerland), 2021, 11, 558.	1.4	19
56	Shotgun proteomic analysis for detecting differentially expressed proteins in the reduced culm number rice. Proteomics, 2011, 11, 455-468.	1.3	18
57	Genotypic Variation among Okra (<i>Abelmoschus esculentus</i> (L.) Moench) Germplasms in South India. Plant Breeding and Biotechnology, 2016, 4, 234-241.	0.3	18
58	Molecular mapping of a gene â€ld(t)' controlling cleistogamy in rice. Theoretical and Applied Genetics, 2006, 112, 1429-1433.	1.8	17
59	Development of New CAPS/dCAPS and SNAP Markers for Rice Eating Quality. HAYATI Journal of Biosciences, 2013, 20, 15-23.	0.1	17
60	Genetic mapping and QTL analysis for yield and agronomic traits with an F2:3 population derived from a waxy cornÂ×Âsweet corn cross. Genes and Genomics, 2014, 36, 179-189.	0.5	17
61	QTL Analysis for Fe and Zn Concentrations in Rice Grains Using a Doubled Haploid Population Derived from a Cross Between Rice (<i>Oryza sativa</i>) Cultivar 93-11 and Milyang 352. Plant Breeding and Biotechnology, 2020, 8, 69-76.	0.3	17
62	Genotype × environment interactions for chilling tolerance of rice recombinant inbred lines under different low temperature environments. Field Crops Research, 2010, 117, 226-236.	2.3	16
63	Identification of QTLs for hybrid fertility in inter-subspecific crosses of rice (Oryza sativa L.). Genes and Genomics, 2011, 33, 39-48.	0.5	16
64	Identification and Characterization of LARGE EMBRYO, a New Gene Controlling Embryo Size in Rice (Oryza sativa L.). Rice, 2019, 12, 22.	1.7	16
65	Evaluation of Whole-Genome Sequence, Genetic Diversity, and Agronomic Traits of Basmati Rice (Oryza) Tj ETQq1	1.0.7843	814 rgBT /0
66	Expression of hpa1 Gene Encoding a Bacterial Harpin Protein in Xanthomonas oryzae pv. oryzae Enhances Disease Resistance to Both Fungal and Bacterial Pathogens in Rice and Arabidopsis. Plant Pathology Journal, 2012, 28, 364-372.	0.7	14
67	Identification of Heterosis QTLs for Yield and Yield-Related Traits in Indica-Japonica Recombinant Inbred Lines of Rice (Oryza sativa L.). Plant Breeding and Biotechnology, 2017, 5, 371-389.	0.3	14
68	QTL analyses of heterosis for grain yield and yield-related traits in indica-japonica crosses of rice (Oryza sativa L.). Genes and Genomics, 2012, 34, 367-377.	0.5	12
69	Variation in pre-harvest sprouting resistance, seed germination and changes in abscisic acid levels during grain development in diverse rice genetic resources. Plant Genetic Resources: Characterisation and Utilisation, 2018, 16, 18-27.	0.4	12
70	Fine mapping and candidate gene analysis of a new mutant gene for panicle apical abortion in rice. Euphytica, 2014, 197, 387-398.	0.6	11
71	Association between sequence variants in panicle development genes and the number of spikelets per panicle in rice. BMC Genetics, 2018, 19, 5.	2.7	11
72	OsCOP1 regulates embryo development and flavonoid biosynthesis in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2021, 134, 2587-2601.	1.8	11

#	Article	IF	CITATIONS
73	Genetic Basis of Tiller Dynamics of Rice Revealed by Genome-Wide Association Studies. Plants, 2020, 9, 1695.	1.6	10
74	Identification of quantitative trait loci for panicle length and yield related traits under different water and P application conditions in tropical region in rice (Oryza sativa L.). Euphytica, 2017, 213, 1.	0.6	9
75	QTLs for hybrid fertility and their association with female and male sterility in rice. Genes and Genomics, 2012, 34, 355-365.	0.5	8
76	Analysis of evolutionary relationships provides new clues to the origins of weedy rice. Ecology and Evolution, 2020, 10, 891-900.	0.8	8
77	Genetic structure and isolation by altitude in rice landraces of Yunnan, China revealed by nucleotide and microsatellite marker polymorphisms. PLoS ONE, 2017, 12, e0175731.	1.1	8
78	<scp>DNA</scp> markers for eating quality of indica rice in <scp>I</scp> ndonesia. Plant Breeding, 2015, 134, 40-48.	1.0	7
79	Characterization and mapping of d13, a dwarfing mutant gene, in rice. Genes and Genomics, 2015, 37, 893-903.	0.5	7
80	Characterization of indica–japonica subspecies-specific InDel loci in wild relatives of rice (Oryza) Tj ETQq0 0 405-418.	0 rgBT /Ove 0.8	erlock 10 Tf 50 7
81	The DROOPING LEAF (DR) gene encoding GDSL esterase is involved in silica deposition in rice (Oryza) Tj ETQq1	1 0.78431 1.1	l 4 rgBT /Overl
82	Early Vigor of a Pyramiding Line Containing Two Quantitative Trait Loci, Phosphorus Uptake 1 (Pup1) and Anaerobic Germination 1 (AG1) in Rice (O. Sativa L.). Agriculture (Switzerland), 2020, 10, 453.	1.4	6
83	Identification of Yield and Yield-Related Quantitative Trait Loci for the Field High Temperature Condition in Backcross Populations of Rice (<i>Oryza sativa</i> L.). Plant Breeding and Biotechnology, 2019, 7, 415-426.	0.3	6
84	Transcriptional Changes in the Developing Rice Seeds Under Salt Stress Suggest Targets for Manipulating Seed Quality. Frontiers in Plant Science, 2021, 12, 748273.	1.7	6
85	Prediction of Physicochemical Properties of Indonesian Indica Rice Using Molecular Markers. HAYATI Journal of Biosciences, 2014, 21, 76-86.	0.1	5
86	Identification of a Candidate Gene for the Novel Cytoplasmic Male Sterility Derived from Inter-Subspecific Crosses in Rice (Oryza sativa L.). Genes, 2021, 12, 590.	1.0	5
87	Arachis hypogaea resveratrol synthase 3 alters the expression pattern of UDP-glycosyltransferase genes in developing rice seeds. PLoS ONE, 2021, 16, e0245446.	1.1	4
88	Evidence for evolution and selection of drought-resistant genes based on high-throughput resequencing in weedy rice. Journal of Experimental Botany, 2022, 73, 1949-1962.	2.4	4
89	Gene identification using rice genome sequences. Genes and Genomics, 2013, 35, 415-424.	0.5	3
90	Identification of a novel candidate gene for rolled leaf in rice. Genes and Genomics, 2016, 38, 1077-1084.	0.5	3

#	Article	IF	CITATIONS
91	Identification of a novel SPLIT-HULL (SPH) gene associated with hull splitting in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2018, 131, 1469-1480.	1.8	3
92	The Effect of Water Level in Rice Cropping System on Phosphorus Uptake Activity of Pup1 in a Pup1+Sub1 Breeding Line. Plants, 2021, 10, 1523.	1.6	3
93	Fine Mapping and Candidate Gene Analysis of Small Round Grain Mutant in Rice. Plant Breeding and Biotechnology, 2017, 5, 354-362.	0.3	3
94	Morphological and genetic characterization of off-type rice plants collected from farm fields in Korea. Journal of Plant Biology, 2013, 56, 160-167.	0.9	2
95	Genome-wide transcriptome comparison of flag leaves among japonica and indica varieties. Journal of Plant Biology, 2015, 58, 333-343.	0.9	2
96	Major QTLs, qARO1 and qARO9, Additively Regulate Adaxial Leaf Rolling in Rice. Frontiers in Plant Science, 2021, 12, 626523.	1.7	2
97	Characterization of the Common Japonica-Originated Genomic Regions in the High-Yielding Varieties Developed from Inter-Subspecific Crosses in Temperate Rice (Oryza sativa L.). Genes, 2020, 11, 562.	1.0	2
98	Characterization of Selected Rice Varieties Adapted in Africa. Plant Breeding and Biotechnology, 2016, 4, 297-305.	0.3	2
99	Identification of QTLs Associated with <i>indica</i> - <i>japonica</i> Differentiation-Related Traits in Rice (<i>Oryza sativa</i> L.). Plant Breeding and Biotechnology, 2018, 6, 193-205.	0.3	2
100	Evaluating Multiple Allelic Combination to Determine Tiller Angle Variation in Rice. Agriculture (Switzerland), 2020, 10, 428.	1.4	1
101	Characterization and Genetic Mapping of White-Spotted Leaf (wspl) Mutant in Rice. Plant Breeding and Biotechnology, 2019, 7, 340-349.	0.3	1
102	Phenotypic Characterization and Genetic Mapping of An Open-hull Sterile Mutant in Rice. Plant Breeding and Biotechnology, 2013, 1, 24-32.	0.3	1
103	Identification of Quantitative Trait Loci for Agronomic Traits in Two Rice Populations Derived from a Cross with a Wide Compatibility Line. Plant Breeding and Biotechnology, 2014, 2, 231-246.	0.3	1
104	Identification of QTLs for cold tolerance at the booting and flowering stages in rice (Oryza sativa L.). Euphytica, 2021, 217, 1.	0.6	1
105	Comparison of Agronomic and Seed Traits of Common Bean (<i>Phaseolus vulgaris</i> L.) Germplasm from Korea, Bulgaria, and El Salvador. Han'guk Yukchong Hakhoe Chi, 2022, 54, 8-15.	0.2	1
106	Identification and characterization of the stunted sterile (ss) mutant in rice. Genes and Genomics, 2020, 42, 869-882.	0.5	0