Banrida Wahlang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4481497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Circulating MicroRNAs, Polychlorinated Biphenyls, and Environmental Liver Disease in the Anniston Community Health Survey. Environmental Health Perspectives, 2022, 130, 17003.	6.0	12
2	Multiomics analysis of the impact of polychlorinated biphenyls on environmental liver disease in a mouse model. Environmental Toxicology and Pharmacology, 2022, 94, 103928.	4.0	7
3	Polychlorinated biphenyls altered gut microbiome in CAR and PXR knockout mice exhibiting toxicant-associated steatohepatitis. Toxicology Reports, 2021, 8, 536-547.	3.3	20
4	Effect of Epidermal Growth Factor Treatment and Polychlorinated Biphenyl Exposure in a Dietary-Exposure Mouse Model of Steatohepatitis. Environmental Health Perspectives, 2021, 129, 37010.	6.0	7
5	Associations Between Residential Exposure to Volatile Organic Compounds and Liver Injury Markers. Toxicological Sciences, 2021, 185, 50-63.	3.1	11
6	Proteomics and metabolic phenotyping define principal roles for the aryl hydrocarbon receptor in mouse liver. Acta Pharmaceutica Sinica B, 2021, 11, 3806-3819.	12.0	17
7	Combined exposure to polychlorinated biphenyls and high-fat diet modifies the global epitranscriptomic landscape in mouse liver. Environmental Epigenetics, 2021, 7, dvab008.	1.8	1
8	Insecticide and metal exposures are associated with a surrogate biomarker for non-alcoholic fatty liver disease in the National Health and Nutrition Examination Survey 2003–2004. Environmental Science and Pollution Research, 2020, 27, 6476-6487.	5.3	24
9	Hepatic Injury Caused by the Environmental Toxicant Vinyl Chloride is Sex-Dependent in Mice. Toxicological Sciences, 2020, 174, 79-91.	3.1	9
10	Co-exposure to PCB126 and PFOS increases biomarkers associated with cardiovascular disease risk and liver injury in mice. Toxicology and Applied Pharmacology, 2020, 409, 115301.	2.8	15
11	Dioxin-like and non-dioxin-like PCBs differentially regulate the hepatic proteome and modify diet-induced nonalcoholic fatty liver disease severity. Medicinal Chemistry Research, 2020, 29, 1247-1263.	2.4	25
12	Blood BTEXS and heavy metal levels are associated with liver injury and systemic inflammation in Gulf states residents. Food and Chemical Toxicology, 2020, 139, 111242.	3.6	32
13	Polychlorinated biphenyls and nonalcoholic fatty liver disease. Current Opinion in Toxicology, 2019, 14, 21-28.	5.0	35
14	Environmental perfluoroalkyl acid exposures are associated with liver disease characterized by apoptosis and altered serum adipocytokines. Environmental Pollution, 2019, 247, 1055-1063.	7.5	118
15	Identifying sex differences arising from polychlorinated biphenyl exposures in toxicant-associated liver disease. Food and Chemical Toxicology, 2019, 129, 64-76.	3.6	25
16	Mechanisms of Environmental Contributions to Fatty Liver Disease. Current Environmental Health Reports, 2019, 6, 80-94.	6.7	86
17	Proteomic Analysis Reveals Novel Mechanisms by Which Polychlorinated Biphenyls Compromise the Liver Promoting Diet-Induced Steatohepatitis. Journal of Proteome Research, 2019, 18, 1582-1594.	3.7	19
18	Hepatic metabolomics reveals that liver injury increases PCB 126-induced oxidative stress and metabolic dysfunction. Chemosphere, 2019, 217, 140-149.	8.2	61

BANRIDA WAHLANG

#	Article	IF	CITATIONS
19	Hepatic signalling disruption by pollutant Polychlorinated biphenyls in steatohepatitis. Cellular Signalling, 2019, 53, 132-139.	3.6	15
20	Epidermal Growth Factor Receptor Signaling Disruption by Endocrine and Metabolic Disrupting Chemicals. Toxicological Sciences, 2018, 162, 622-634.	3.1	40
21	Exposure to persistent organic pollutants: impact on women's health. Reviews on Environmental Health, 2018, 33, 331-348.	2.4	28
22	Role of cAMP and phosphodiesterase signaling in liver health and disease. Cellular Signalling, 2018, 49, 105-115.	3.6	85
23	A compromised liver alters polychlorinated biphenyl-mediated toxicity. Toxicology, 2017, 380, 11-22.	4.2	36
24	Editor's Highlight: PCB126 Exposure Increases Risk for Peripheral Vascular Diseases in a Liver Injury Mouse Model. Toxicological Sciences, 2017, 160, 256-267.	3.1	33
25	Polychlorinated biphenyls disrupt hepatic epidermal growth factor receptor signaling. Xenobiotica, 2017, 47, 807-820.	1.1	28
26	Dioxin-like pollutants increase hepatic flavin containing monooxygenase (FMO3) expression to promote synthesis of the pro-atherogenic nutrient biomarker trimethylamine N-oxide from dietary precursors. Journal of Nutritional Biochemistry, 2016, 33, 145-153.	4.2	33
27	Polychlorinated biphenyl exposure alters the expression profile of microRNAs associated with vascular diseases. Toxicology in Vitro, 2016, 35, 180-187.	2.4	37
28	Polychlorinated Biphenyl-Xenobiotic Nuclear Receptor Interactions Regulate Energy Metabolism, Behavior, and Inflammation in Non-alcoholic-Steatohepatitis. Toxicological Sciences, 2016, 149, 396-410.	3.1	56
29	Identification of Environmental Chemicals Associated with the Development of Toxicant-associated Fatty Liver Disease in Rodents. Toxicologic Pathology, 2015, 43, 482-497.	1.8	115
30	Human Receptor Activation by Aroclor 1260, a Polychlorinated Biphenyl Mixture. Toxicological Sciences, 2014, 140, 283-297.	3.1	81
31	Evaluation of Aroclor 1260 exposure in a mouse model of diet-induced obesity and non-alcoholic fatty liver disease. Toxicology and Applied Pharmacology, 2014, 279, 380-390.	2.8	85
32	Polychlorinated biphenyl 153 is a diet-dependent obesogen that worsens nonalcoholic fatty liver disease in male C57BL6/J mice. Journal of Nutritional Biochemistry, 2013, 24, 1587-1595.	4.2	151
33	Toxicant-associated Steatohepatitis. Toxicologic Pathology, 2013, 41, 343-360.	1.8	161