List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4481434/publications.pdf Version: 2024-02-01

179 papers	7,533 citations	71102 41 h-index	66911 78 g-index
213	213	213	3664
all docs	docs citations	times ranked	citing authors

Διανι Δ.Ι.ι.Ο

#	Article	IF	CITATIONS
1	Advanced Metal Casting. , 2022, , 13-26.		2
2	Dynamic precipitation and enhanced mechanical properties of ZK60 magnesium alloy achieved by low temperature extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 829, 142143.	5.6	38
3	On the interactions between molten aluminum and high entropy alloy particles during aluminum matrix composite processing. Journal of Alloys and Compounds, 2022, 895, 162712.	5.5	10
4	Phase equilibria and microstructure investigation of Mg-Gd-Y-Zn alloy system. Journal of Magnesium and Alloys, 2022, 10, 689-696.	11.9	17
5	Low-Cyclic Fatigue Behavior of Peak-Aged Mg–Nd-Based Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 754-761.	2.2	2
6	Deformation microstructure and thermomechanical processing maps of homogenized AA2070 aluminum alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 834, 142619.	5.6	23
7	Order-disorder transition and its mechanical effects in lightweight AlCrTiV high entropy alloys. Scripta Materialia, 2022, 210, 114462.	5.2	13
8	Characterization and modeling of concurrent precipitation in Mg-Al-Sn alloys using an improved Kampmann-Wagner numerical (KWN) model. Materialia, 2022, 21, 101348.	2.7	10
9	Towards high strength cast Mg-RE based alloys: Phase diagrams and strengthening mechanisms. Journal of Magnesium and Alloys, 2022, 10, 1401-1427.	11.9	43
10	Alloy development and process innovations for light metals casting. Journal of Materials Processing Technology, 2022, 306, 117606.	6.3	66
11	A New Recycled Al–Si–Mg Alloy for Sustainable Structural Die Casting Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 2861-2873.	2.2	12
12	Cellular automaton simulation and experimental validation of eutectic transformation during solidification of Al-Si alloys. Npj Computational Materials, 2022, 8, .	8.7	8
13	Three-dimensional visualization and quantification of microporosity in aluminum castings by X-ray micro-computed tomography. Journal of Materials Science and Technology, 2021, 65, 99-107.	10.7	21
14	The effect of microstructure on the plastic strain localization and fatigue crack initiation in cast Mg–8Gd–3Y–0.5Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 801, 140383.	5.6	7
15	Co-free CuFeMnNi high-entropy alloy with tunable tensile properties by thermomechanical processing. Journal of Materials Science, 2021, 56, 7670-7680.	3.7	10
16	On the exceptionally high ductility of Mg–2Zn-0.3Ca-0.2Ce-0.1Mn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 819, 141484.	5.6	6
17	Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science, 2021, 374, 465-471.	12.6	137
18	A Novel Mg–CaMgSn Master Alloy for Grain Refinement in Mg–Al-Based Alloys. Metals, 2021, 11, 1722.	2.3	3

#	Article	IF	CITATIONS
19	Enhanced ductility in high-pressure die casting Mg-4Ce-xAl-0.5Mn alloys via modifying second phase. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 773, 138870.	5.6	22
20	Microstructural evolution of Mg-Al-Re alloy reinforced with alumina fibers. Journal of Magnesium and Alloys, 2020, 8, 565-577.	11.9	11
21	Biocompatibility of a novel heat-treated and ceramic-coated magnesium alloy (Mg–1.2Zn–0.5Ca–0.5Mn) for resorbable skeletal fixation devices. MRS Communications, 2020, 10, 467-474.	1.8	6
22	Titanium alloy design and casting process development using an Integrated Computational Materials Engineering (ICME) approach. MATEC Web of Conferences, 2020, 321, 10013.	0.2	1
23	A New Model for Predicting Oxide-Related Defects in Aluminum Castings. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 1989-2002.	2.1	2
24	Modeling Precipitation Hardening and Yield Strength in Cast Al-Si-Mg-Mn Alloys. Metals, 2020, 10, 1356.	2.3	14
25	Predicting and controlling interfacial microstructure of magnesium/aluminum bimetallic structures for improved interfacial bonding. Journal of Magnesium and Alloys, 2020, 8, 578-586.	11.9	37
26	A new magnesium sheet alloy with high tensile properties and room-temperature formability. Scientific Reports, 2020, 10, 10044.	3.3	22
27	Multi-component numerical simulation and experimental study of dendritic growth during solidification processing. Journal of Materials Processing Technology, 2020, 286, 116829.	6.3	10
28	Prediction of location specific mechanical properties of aluminum casting using a new CA-FEA (cellular automaton-finite element analysis) approach. Materials and Design, 2020, 194, 108929.	7.0	17
29	Predicting gas and shrinkage porosity in solidification microstructure: A coupled three-dimensional cellular automaton model. Journal of Materials Science and Technology, 2020, 49, 91-105.	10.7	27
30	Assessing phase equilibria and atomic mobility of intermetallic compounds in aluminum-magnesium alloy system. Journal of Alloys and Compounds, 2020, 825, 153962.	5.5	17
31	Microstructure and hot deformation behavior of a new aluminum–lithium–copper based AA2070 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 777, 139048.	5.6	33
32	Constitutive behavior and processing maps of a new wrought magnesium alloy ZE20 (Mg-2Zn-0.2Ce). Journal of Magnesium and Alloys, 2020, 8, 111-126.	11.9	44
33	CALPHAD Modeling and Microstructure Investigation of Mg–Gd–Y–Zn Alloys. Minerals, Metals and Materials Series, 2020, , 61-69.	0.4	0
34	Basal slip dominant fatigue damage behavior in a cast Mg-8Gd-3Y-Zr alloy. International Journal of Fatigue, 2019, 118, 104-116.	5.7	25
35	Towards high ductility in magnesium alloys - The role of intergranular deformation. International Journal of Plasticity, 2019, 123, 121-132.	8.8	76
36	A CALPHAD (CALculation of PHAse Diagrams)-based viscosity model for Al-Ni-Fe-Co melt system. Journal of Molecular Liquids, 2019, 291, 111271.	4.9	16

#	Article	IF	CITATIONS
37	A new magnesium sheet alloy and its multi-stage homogenization for simultaneously improved ductility and strength at room temperature. Scripta Materialia, 2019, 171, 92-97.	5.2	49
38	Materials for Automotive Lightweighting. Annual Review of Materials Research, 2019, 49, 327-359.	9.3	143
39	Oxidation and Ignition Behaviors of Molten Mg-Nd-Zr Alloy in Resin-Sand Mold. Journal of Materials Engineering and Performance, 2019, 28, 5344-5351.	2.5	2
40	Ceramic coating for delayed degradation of Mg-1.2Zn-0.5Ca-0.5Mn bone fixation and instrumentation. Thin Solid Films, 2019, 687, 137456.	1.8	19
41	Three-dimensional cellular automaton simulation of coupled hydrogen porosity and microstructure during solidification of ternary aluminum alloys. Scientific Reports, 2019, 9, 13099.	3.3	13
42	A Formation Map of Iron-Containing Intermetallic Phases in Recycled Cast Aluminum Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 5945-5956.	2.2	40
43	Examination of Dendritic Growth During Solidification of Ternary Alloys via a Novel Quantitative 3D Cellular Automaton Model. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 123-135.	2.1	19
44	Predicting grain structure in high pressure die casting of aluminum alloys: A coupled cellular automaton and process model. Computational Materials Science, 2019, 161, 64-75.	3.0	28
45	Controlling Particle/Metal Interactions in Metal Matrix Composites During Solidification: The Role of Melt Viscosity and Cooling Rate. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 3736-3747.	2.2	18
46	CALPHAD-Based Modeling and Experimental Validation of Microstructural Evolution and Microsegregation in Magnesium Alloys During Solidification. Journal of Phase Equilibria and Diffusion, 2019, 40, 495-507.	1.4	18
47	"Effect of Zn content and aging temperature on the in-vitro properties of heat-treated and Ca/P ceramic-coated Mg-0.5%Ca-x%Zn alloys― Materials Science and Engineering C, 2019, 103, 109700.	7.3	11
48	A new fatigue life model for thermally-induced cracking in H13 steel dies for die casting. Journal of Materials Processing Technology, 2019, 271, 444-454.	6.3	25
49	Inhibiting Brittle Intermetallic Layer in Magnesium/Aluminum Bimetallic Castings via In Situ Formation of Mg2Si Phase. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 1547-1552.	2.1	7
50	Predicting primary dendrite arm spacing in Al–Si–Mg alloys: effect of Mg alloying. Journal of Materials Science, 2019, 54, 9907-9920.	3.7	17
51	Ultrahigh strength Mg-Al-Ca-Mn extrusion alloys with various aluminum contents. Journal of Alloys and Compounds, 2019, 792, 130-141.	5.5	70
52	The effects of grain size and heat treatment on the deformation heterogeneities and fatigue behaviors of GW83K magnesium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 754, 246-257.	5.6	18
53	Quantitative Study of Microstructure-Dependent Thermal Conductivity in Mg-4Ce-xAl-0.5Mn Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1970-1984.	2.2	26
54	The Effects of Silicon Addition on the Microstructure and Mechanical Properties of a Mg-Al-Sn Alloy Produced by Vacuum Assisted High Pressure Die Casting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 1522-1533.	2.2	8

#	Article	IF	CITATIONS
55	Lightweight AlCrTiV high-entropy alloys with dual-phase microstructure via microalloying. Journal of Materials Science, 2019, 54, 2271-2277.	3.7	40
56	Manufacturing Materials Optimization Research at The REMADE Institute. Minerals, Metals and Materials Series, 2019, , 33-36.	0.4	1
57	Phase-field modelling on effect of pressure on growth kinetics of Mg–Al–Sn alloy. Materials Science and Technology, 2018, 34, 1362-1369.	1.6	3
58	Experimental investigation and simulation of precipitation evolution in Mg-3Nd-0.2Zn alloy. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2018, 60, 58-67.	1.6	17
59	Effect of solute atoms and second phases on the thermal conductivity of Mg-RE alloys: A quantitative study. Journal of Alloys and Compounds, 2018, 747, 431-437.	5.5	86
60	Removing the oxide layer on the A380 substrate of AM60/A380 bimetallic castings by the zincate process followed with galvanizing. Vacuum, 2018, 148, 127-130.	3.5	6
61	CALPHAD modeling and experimental assessment of Ti-Al-Mn ternary system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2018, 63, 126-133.	1.6	13
62	Effect of heat treatment on strain–controlled fatigue behavior of cast Mg–Nd–Zn–Zr alloy. Journal of Materials Science and Technology, 2018, 34, 2091-2099.	10.7	17
63	In-mold oxidation behavior of Mg–4.32Y–2.83Nd–0.41Zr alloy. Journal of Materials Science, 2018, 53, 11091-11103.	3.7	10
64	Applications of CALPHAD modeling and databases in advanced lightweight metallic materials. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2018, 62, 1-17.	1.6	68
65	A low-cost and high-strength Ti-Al-Fe-based cast titanium alloy for structural applications. Scripta Materialia, 2018, 157, 124-128.	5.2	42
66	Interphase boundary segregation of silver and enhanced precipitation of Mg17Al12 Phase in a Mg-Al-Sn-Ag alloy. Scripta Materialia, 2018, 154, 192-196.	5.2	49
67	Study on the response of dendritic growth to periodic increase–decrease pressure in solidification via in situ observation using succinonitrile. Journal of Crystal Growth, 2018, 498, 85-92.	1.5	6
68	Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2Zn-0.5Ca (wt%) alloy for use as resorbable bone fixation material. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69, 203-212.	3.1	70
69	Microstructure and Mechanical Properties of High Pressure Die Cast Mg–Al–Sn–Si Alloys. Minerals, Metals and Materials Series, 2017, , 289-295.	0.4	2
70	A combined electron backscattered diffraction and visco-plastic self-consistent analysis on the anisotropic deformation behavior in a Mg-Gd-Y alloy. Materials and Design, 2017, 122, 164-171.	7.0	27
71	Fatigue characteristics of sand-cast AZ91D magnesium alloy. Journal of Magnesium and Alloys, 2017, 5, 1-12.	11.9	22
72	First conductive atomic force microscopy investigation on the oxide-film removal mechanism by chloride fluxes in aluminum brazing. Scripta Materialia, 2017, 138, 12-16.	5.2	15

#	Article	IF	CITATIONS
73	A Statistics-Based Cracking Criterion of Resin-Bonded Silica Sand for Casting Process Simulation. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 260-267.	2.1	4
74	A phase field model coupled with pressure-effect-embedded thermodynamic modeling for describing microstructure and microsegregation in pressurized solidification of a ternary magnesium alloy. Computational Materials Science, 2017, 136, 264-270.	3.0	11
75	The melt protection mechanism of an SO2/CO2 gas mixture for a magnesium-rare-earth based alloy. Journal of Alloys and Compounds, 2017, 722, 101-107.	5.5	7
76	Phase formations in low density high entropy alloys. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2017, 56, 19-28.	1.6	38
77	Ultra-high throughput microfluidic optomechanical sensors (Conference Presentation). , 2017, , .		0
78	Fatigue Properties of Cast Magnesium Wheels. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 4239-4257.	2.2	12
79	The Effect of Heat-Treatment on Mechanical, Microstructural, and Corrosion Characteristics of a Magnesium Alloy With Potential Application in Resorbable Bone Fixation Hardware. , 2016, , .		2
80	Mechanical Properties and Microstructure of AZ31 Magnesium Alloy Tubes. , 2016, , 381-387.		0
81	Athermal influence of pulsed electric current on the twinning behavior of Mg–3Al–1Zn alloy during rolling. Scripta Materialia, 2016, 114, 151-155.	5.2	36
82	Precipitation evolution and hardening in Mg Sm Zn Zr alloys. Acta Materialia, 2016, 111, 335-347.	7.9	102
83	Investigation of the non-equilibrium solidification microstructure of a Mg–4Al–2RE (AE42) alloy. Journal of Materials Science, 2016, 51, 6287-6294.	3.7	11
84	Enhanced rollability of Mg 3Al 1Zn alloy by pulsed electric current: a comparative study. Materials and Design, 2016, 100, 204-216.	7.0	47
85	Size Effect on Magnesium Alloy Castings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2686-2704.	2.2	7
86	Interface formation in magnesium/aluminium bimetallic castings with a nickel interlayer. International Journal of Cast Metals Research, 2016, 29, 338-343.	1.0	14
87	Abnormal texture development in magnesium alloy Mg–3Al–1Zn during large strain electroplastic rolling: Effect of pulsed electric current. International Journal of Plasticity, 2016, 87, 86-99.	8.8	51
88	Cu redistribution study during the corrosion of AZ91 using a rotating ring-disk collection experiment. Corrosion Science, 2016, 112, 760-764.	6.6	26
89	Microscopic deformation compatibility during monotonic loading in a Mg-Gd-Y alloy. Materials Characterization, 2016, 119, 195-199.	4.4	17
90	Formation of a new incoherent twin boundary in a Mg–3Gd alloy. Scripta Materialia, 2016, 112, 136-139.	5.2	17

#	Article	IF	CITATIONS
91	Influence of Cerium on Texture and Ductility of Magnesium Extrusions. , 2016, , 363-368.		6
92	Magnesium Front End Research and Development: A Canada-China-USA Collaboration. , 2016, , 41-48.		5
93	New Phases in Mg-Al-Ca System. , 2016, , 427-432.		1
94	Development of Mg-Al-Sn-Si Alloys Using a Calphad Approach. , 2016, , 79-82.		3
95	Numerical Modelling of Large Strain Deformation in Magnesium. , 2016, , 467-471.		0
96	Computational Thermodynamics and Experimental Investigation of the Mg-Al-Ca-Sr Alloys. , 2016, , 421-425.		0
97	Computational Thermodynamics and Experimental Investigation of Mg-Al-Ca Alloys. , 2016, , 415-419.		0
98	Advanced lightweight materials and manufacturing processes for automotive applications. MRS Bulletin, 2015, 40, 1045-1054.	3.5	117
99	Three-Dimensional Phase-Field Simulation and Experimental Validation of β-Mg17Al12 Phase Precipitation in Mg-Al-Based Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 948-962.	2.2	39
100	Study on Pressurized Solidification Behavior and Microstructure Characteristics of Squeeze Casting Magnesium Alloy AZ91D. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 328-336.	2.1	35
101	In-situ investigation on the microstructure evolution and plasticity of two magnesium alloys during three-point bending. International Journal of Plasticity, 2015, 72, 218-232.	8.8	92
102	Hot deformation behavior and workability of pre-extruded ZK60A magnesium alloy. Transactions of Nonferrous Metals Society of China, 2015, 25, 1822-1830.	4.2	11
103	Large-scale three-dimensional phase-field simulation of multi-variant β-Mg17Al12 in Mg–Al-based alloys. Computational Materials Science, 2015, 101, 248-254.	3.0	24
104	Fatigue strength dependence on the ultimate tensile strength and hardness in magnesium alloys. International Journal of Fatigue, 2015, 80, 468-476.	5.7	50
105	Precipitation sequence and kinetics in a Mg-4Sm-1Zn-0.4Zr (wt%) alloy. Journal of Alloys and Compounds, 2015, 649, 649-655.	5.5	33
106	Twinning behavior and lattice rotation in a Mg–Gd–Y–Zr alloy under ballistic impact. Journal of Alloys and Compounds, 2015, 650, 622-632.	5.5	33
107	Material design and development: From classical thermodynamics to CALPHAD and ICME approaches. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2015, 50, 6-22.	1.6	74
108	Fatigue behavior and life prediction of cast magnesium alloys. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 647, 113-126.	5.6	28

#	Article	IF	CITATIONS
109	Hot Compression Behavior of Magnesium Alloys ZE20 and AM30. , 2015, , 25-28.		1
110	Simulation of Concurrent Precipitation of Two Strengthening Phases in Magnesium Alloys. , 2015, , 289-293.		0
111	Precipitation Sequence in a Mg-Sm-Zn-Zr Alloy. , 2015, , 367-372.		0
112	Thermodynamic modeling and experimental investigation of the magnesium–zinc–samarium alloys. Journal of Alloys and Compounds, 2014, 593, 71-78.	5.5	23
113	Interfacial phenomena in magnesium/aluminum bi-metallic castings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 595, 154-158.	5.6	55
114	Improved Interfacial Bonding in Magnesium/Aluminum Overcasting Systems by Aluminum Surface Treatments. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2014, 45, 2495-2503.	2.1	17
115	A novel aluminum surface treatment for improved bonding in magnesium/aluminum bimetallic castings. Scripta Materialia, 2014, 86, 52-55.	5.2	47
116	A phase field model for simulating the precipitation of multi-variant β-Mg17Al12 in Mg–Al-based alloys. Scripta Materialia, 2013, 68, 691-694.	5.2	29
117	Magnesium casting technology for structural applications. Journal of Magnesium and Alloys, 2013, 1, 2-22.	11.9	682
118	High Cycle Fatigue of Cast Mg-3Nd-0.2Zn Magnesium Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 5202-5215.	2.2	33
119	Microstructure and Mechanical Properties of Mg-7Al-2Sn Alloy Processed by Super Vacuum Die-Casting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 4788-4799.	2.2	28
120	Interdiffusion and Phase Growth Kinetics in Magnesium-Aluminum Binary System. Journal of Phase Equilibria and Diffusion, 2013, 34, 104-115.	1.4	56
121	Microstructure and mechanical properties of a high ductility Mg–Zn–Mn–Ce magnesium alloy. Journal of Magnesium and Alloys, 2013, 1, 283-291.	11.9	53
122	Hot deformation behavior of as-cast Mg–Zn–Mn–Ce alloy in compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 560, 492-499.	5.6	35
123	Application of Computational Thermodynamics and Calphad in Magnesium Alloy Development. , 2013, , 3-8.		2
124	Flow Behavior and Hot Workability of Pre-Extruded AZ80 Magnesium Alloy. , 2013, , 121-125.		0
125	Aging Behavior and Microstructural Evolution in Mg-3Nd-0.2Zn-0.5Zr Alloy. , 2013, , 27-32.		0
126	Calibrating material parameters to model the thin-walled components made of die cast AM60B magnesium alloy. International Journal of Crashworthiness, 2012, 17, 540-552.	1.9	10

#	Article	IF	CITATIONS
127	Computational phase equilibria and experimental investigation of magnesium–aluminum–calcium alloys. Intermetallics, 2012, 24, 22-29.	3.9	37
128	Improved bending fatigue and corrosion properties of a Mg–Al–Mn alloy by super vacuum die casting. Scripta Materialia, 2012, 67, 879-882.	5.2	28
129	Directional Solidification and Microsegregation in a Magnesium-Aluminum-Calcium Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3239-3248.	2.2	36
130	A quantitative model for describing crystal nucleation in pressurized solidification during squeeze casting. Scripta Materialia, 2012, 66, 215-218.	5.2	40
131	Plastic flow behavior of a high-strength magnesium alloy NZ30K. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 532, 616-622.	5.6	18
132	Effect of Zn on the microstructure evolution of extruded Mg–3Nd (–Zn)–Zr (wt.%) alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 543, 12-21.	5.6	46
133	Solidification Microstructure and Mechanical Properties of Cast Magnesium-Aluminum-Tin Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 360-368.	2.2	70
134	Microstructure evolution of Mg-3%Al-1%Zn alloy tube during warm bending. Journal of Materials Science, 2012, 47, 3801-3807.	3.7	10
135	Thermodynamic modeling and experimental investigation of the magnesium–neodymium–zinc alloys. Intermetallics, 2011, 19, 1720-1726.	3.9	27
136	Texture and mechanical behavior evolution of age-hardenable Mg–Nd–Zn extrusions during aging treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 529, 151-155.	5.6	19
137	The Solidification Microstructure and Precipitation Investigation of Magnesium-Rich Alloys Containing Zn and Ce. , 2011, , 267-270.		0
138	Optimization of Magnesium-Aluminum-Tin Alloys for as-Cast Microstructure and Mechanical Properties. , 2011, , 161-165.		0
139	Microstructure and Mechanical Properties of Extruded Magnesium-Aluminum-Cerium Alloy Tubes. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2010, 41, 2662-2674.	2.2	42
140	Microstructure and Corrosion Characterization of Squeeze Cast AM50 Magnesium Alloys. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2010, 41, 1375-1383.	2.1	25
141	Structure–property relations of cyclic damage in a wrought magnesium alloy. Scripta Materialia, 2010, 63, 751-756.	5.2	37
142	AM30 porthole die extrusions—A comparison with circular seamless extruded tubes. Journal of Materials Processing Technology, 2009, 209, 6010-6020.	6.3	29
143	Effect of strain ratio and strain rate on low cycle fatigue behavior of AZ31 wrought magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 517, 334-343.	5.6	141
144	Dependence of the distribution of deformation twins on strain amplitudes in an extruded magnesium alloy after cyclic deformation. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 519, 38-45.	5.6	69

#	Article	IF	CITATIONS
145	Strain-Controlled Low-Cycle Fatigue Properties of a Newly Developed Extruded Magnesium Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 3014-3026.	2.2	134
146	Low-pressure die casting of magnesium alloy AM50: Response to process parameters. Journal of Materials Processing Technology, 2008, 205, 224-234.	6.3	67
147	Bendability of the wrought magnesium alloy AM30 tubes using a rotary draw bender. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 486, 596-601.	5.6	41
148	Influence of cerium on the texture and ductility of magnesium extrusions. Scripta Materialia, 2008, 59, 562-565.	5.2	300
149	Development and Validation of Extrusion Limit Diagram for AZ31 and AM30 Magnesium Alloys. Materials Science Forum, 2007, 546-549, 327-332.	0.3	1
150	An analysis of localized necking in aluminium alloy tubes during hydroforming using a continuum damage model. International Journal of Mechanical Sciences, 2007, 49, 200-209.	6.7	28
151	Influence of {10-12} extension twinning on the flow behavior of AZ31 Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 445-446, 302-309.	5.6	284
152	The evolution of technology for materials processing over the last 50 years: The automotive example. Jom, 2007, 59, 48-57.	1.9	117
153	Development of a New Wrought Magnesium-Aluminum-Manganese Alloy AM30. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 1184-1192.	2.2	88
154	Grain Refinement of AZ31 Magnesium Alloy by Titanium and Low-Frequency Electromagnetic Casting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 1358-1366.	2.2	61
155	Thermodynamics modeling of the Mg–Sr and Ca–Mg–Sr systems. Journal of Alloys and Compounds, 2006, 421, 172-178.	5.5	41
156	Effect of strontium on the microstructure, mechanical properties, and fracture behavior of AZ31 magnesium alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 1333-1341.	2.2	115
157	Twinning-induced softening in polycrystalline AM30 Mg alloy at moderate temperatures. Scripta Materialia, 2006, 54, 771-775.	5.2	259
158	Aluminum Tube Hydroforming: Formability and Mechanical Properties. , 2005, , .		3
159	First-Principles Investigation of Laves Phases in Mg-Al-Ca System. Materials Science Forum, 2005, 488-489, 169-176.	0.3	13
160	Development of a Moderate Temperature Bending Process for Magnesium Alloy Extrusions. Materials Science Forum, 2005, 488-489, 477-482.	0.3	13
161	Particle-Stimulated Nucleation of Dynamic Recrystallization in AZ31 Alloy at Elevated Temperatures. Materials Science Forum, 2005, 488-489, 261-264.	0.3	12
162	An experimental and numerical study of necking initiation in aluminium alloy tubes during hydroforming. International Journal of Mechanical Sciences, 2004, 46, 1727-1746.	6.7	28

#	Article	IF	CITATIONS
163	Microstructure and fatigue properties of hydroformed aluminum alloys 6063 and 5754. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 2549-2557.	2.2	9
164	Creep resistant Mg-Al-Ca alloys: Computational thermodynamics and experimental investigation. Jom, 2003, 55, 40-44.	1.9	84
165	Recent Magnesium Alloy Development for Automotive Powertrain Applications. Materials Science Forum, 2003, 419-422, 57-66.	0.3	199
166	Magnesium: Current and potential automotive applications. Jom, 2002, 54, 42-48.	1.9	330
167	Creep and microstructure of magnesium-aluminum-calcium based alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 567-574.	2.2	279
168	Tensile Creep and Microstructure of Magnesium-Aluminum-Calcium Based Alloys for Powertrain Applications - Part 2 of 2. , 2001, , .		15
169	An investigation of the properties of Mg-Zn-Al alloys. Scripta Materialia, 1998, 39, 45-53.	5.2	186
170	Inclusions in molten magnesium and potential assessment techniques. Jom, 1996, 48, 47-51.	1.9	27
171	Magnesium castings for automotive applications. Jom, 1995, 47, 28-31.	1.9	72
172	Development of Creep-Resistant Magnesium Alloys for Powertrain Applications: Part 1 of 2. , 0, , .		35
173	Wrought Magnesium Alloys and Manufacturing Processes for Automotive Applications. , 0, , .		18
174	Characterization of Magnesium Automotive Components Produced by Super-Vacuum Die Casting Process. Materials Science Forum, 0, 618-619, 381-386.	0.3	15
175	Mechanical and Thermophysical Properties of Magnesium Alloy Extrusions. , 0, , .		4
176	Self-Pierce Riveting of Magnesium to Aluminum Alloys. SAE International Journal of Materials and Manufacturing, 0, 4, 158-165.	0.3	19
177	Magnesium Alloy Development for Automotive Applications. Materials Science Forum, 0, 706-709, 69-82.	0.3	39
178	Development of Corrosion Testing Protocols for Magnesium Alloys and Magnesium-Intensive Subassemblies. SAE International Journal of Materials and Manufacturing, 0, 6, 242-247.	0.3	12
179	Application of Computational Thermodynamics and CALPHAD in Magnesium Alloy Development. , 0, , 1-8.		2