Tao Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4481410/publications.pdf

Version: 2024-02-01

687220 454834 39 968 13 30 h-index citations g-index papers 39 39 39 748 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Spatial characteristics of stray current corrosion of reinforcing bars in pseudo concrete. Structural Concrete, 2023, 24, 374-388.	1.5	2
2	An approach to effectively improve the interfacial bonding of paste–limestone by incorporating different nanomaterials. Composites Part B: Engineering, 2022, 242, 110046.	5.9	14
3	Improvement of recycled aggregate properties through a combined method of mechanical grinding and microbial-induced carbonate precipitation. Construction and Building Materials, 2022, 342, 128093.	3.2	14
4	Relationship between percolation mechanism and pore characteristics of recycled permeable bricks based on X-ray computed tomography. Reviews on Advanced Materials Science, 2021, 60, 207-215.	1.4	7
5	Effects of load types and critical molar ratios on strength properties and geopolymerization mechanism. Reviews on Advanced Materials Science, 2021, 60, 216-222.	1.4	9
6	Effects of nano-modified polymer cement-based materials on the bending behavior of repaired concrete beams. Nanotechnology Reviews, 2021, 10, 292-303.	2.6	4
7	Feasibility study of cement-stabilized materials using 100% mixed recycled aggregates from perspectives of mechanical properties and microstructure. Reviews on Advanced Materials Science, 2021, 60, 490-502.	1.4	8
8	Effect of nanocomposite slurry on strength development of fully recycled aggregate concrete. Advances in Structural Engineering, 2021, 24, 2176-2184.	1.2	0
9	CO ₂ Pretreatment to Aerated Concrete with High-Volume Industry Wastes Enables a Sustainable Precast Concrete Industry. ACS Sustainable Chemistry and Engineering, 2021, 9, 3363-3375.	3.2	22
10	Effect of Nano Compound Addition on the Properties and Microstructure of Cement Mortar with Mixed Fine Recycled Aggregate. IOP Conference Series: Earth and Environmental Science, 2021, 719, 022074.	0.2	1
11	Evaluating the crushing characteristics of recycled construction and demolition waste for use in road bases. Transportation Geotechnics, 2021, 28, 100543.	2.0	12
12	Effect of Mixed Recycled Aggregate on the Mechanical Strength and Microstructure of Concrete under Different Water Cement Ratios. Materials, 2021, 14, 2631.	1.3	8
13	Estimation of resilient modulus of cement-treated construction and demolition waste with performance-related properties. Construction and Building Materials, 2021, 283, 122107.	3.2	10
14	Deterioration mechanism of concrete under long-term elevated temperature in a metallurgic environment: A case study of the Baosteel company. Case Studies in Construction Materials, 2021, 14, e00503.	0.8	2
15	Comparison of technical properties of cement pastes with different activated recycled powder from construction and demolition waste. Cement and Concrete Composites, 2021, 120, 104065.	4.6	46
16	Effect of Fly Ash on the Mechanical Properties and Microstructure of Cement-Stabilized Materials with 100% Recycled Mixed Aggregates. Minerals (Basel, Switzerland), 2021, 11, 992.	0.8	2
17	Long-term influence of tailings wastewater on mechanical performance and microstructure of dam concrete: A case study in southeastern China. Case Studies in Construction Materials, 2021, 15, e00720.	0.8	1
18	Comparative study on mechanisms for improving mechanical properties and microstructure of cement paste modified by different types of nanomaterials. Nanotechnology Reviews, 2021, 10, 370-384.	2.6	17

#	Article	IF	Citations
19	Effect of nanoâ€SiO 2 on properties and microstructure of polymer modified cementitious materials at different temperatures. Structural Concrete, 2020, 21, 794-803.	1.5	7
20	Analysis of the Effect of Nano-SiO2 and Waterproofing Agent on the Water Transportation Process in Mortar Using NMR. Applied Sciences (Switzerland), 2020, 10, 7867.	1.3	4
21	Effect of nano-strengthening on the properties and microstructure of recycled concrete. Nanotechnology Reviews, 2020, 9, 79-92.	2.6	38
22	Effect of Nano-SiO2 on the Mechanical Properties, Microstructure, and Hydration Process of Cementitious Materials Incorporating Hydrophobic Admixture. Journal of Materials in Civil Engineering, 2020, 32, 04020018.	1.3	7
23	Utilization of red mud for producing a high strength binder by composition optimization and nano strengthening. Nanotechnology Reviews, 2020, 9, 396-409.	2.6	28
24	Effect of different particle sizes of nano-SiO ₂ on the properties and microstructure of cement paste. Nanotechnology Reviews, 2020, 9, 833-842.	2.6	23
25	Effect of nano-SiO2 with different particle size on the hydration kinetics of cement. Thermochimica Acta, 2019, 675, 127-133.	1.2	59
26	Effect of nano-CaCO 3 slurry on the mechanical properties and micro-structure of concrete with and without fly ash. Composites Part B: Engineering, 2017, 117, 124-129.	5.9	97
27	Effect of compound nano-CaCO3 addition on strength development and microstructure of cement-stabilized soil in the marine environment. Construction and Building Materials, 2017, 151, 775-781.	3.2	71
28	Surface Treatment on Recycled Coarse Aggregates with Nanomaterials. Journal of Materials in Civil Engineering, 2016, 28, .	1.3	98
29	The modification effects of a nano-silica slurry on microstructure, strength, and strain development of recycled aggregate concrete applied in an enlarged structural test. Construction and Building Materials, 2015, 95, 721-735.	3.2	106
30	Photocatalytic property of Ag modified nano-TiO2/carbon nanotube composites for NO2 degradation under visible light. Materials Research Innovations, 2014, 18, S2-691-S2-695.	1.0	3
31	Effect of nano-TiO2 on the mechanical properties of cement mortar. Construction and Building Materials, 2012, 29, 241-245.	3.2	229
32	Development and design of composite cementitious material at long-time circular elevated temperature in metallurgy environment. Construction and Building Materials, 2012, 35, 368-375.	3.2	2
33	Effect of nano-TiO2 on the mechanical properties of cement mortar., 2012, 29, 241-241.		1
34	Study on the Photo-Catalytic Properties of Nano-TiO ₂ Cementitious Materials. Advanced Materials Research, 2010, 168-170, 1561-1565.	0.3	0
35	Research on Mechanism of Concrete Corrosion Subjected to Underground Acid Liquid. Key Engineering Materials, 2006, 302-303, 91-97.	0.4	1
36	Effects of Nano-CaCO ₃ on the Compressive Strength and Microstructure of High Strength Concrete in Different Curing Temperature. Applied Mechanics and Materials, 0, 121-126, 126-131.	0.2	11

TAO MENG

#	Article	IF	CITATIONS
37	Influence of Nano-SiO ₂ and Nano-CaCO ₃ on the Mechanical Properties of Concrete with Different Strength Grades. Advanced Materials Research, 0, 250-253, 480-484.	0.3	2
38	Research on Composite Strengthening Nano-Technique of Recycled Aggregate. Applied Mechanics and Materials, 0, 357-360, 1189-1193.	0.2	1
39	Influence of Shrinkage Reduce Agent on Early Age Autogenous Shrinkage of Concrete. Key Engineering Materials, 0, , 211-217.	0.4	1