Huanfeng Jiang

List of Publications by Citations

Source: https://exaly.com/author-pdf/4480948/huanfeng-jiang-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 521
 20,616
 72
 109

 papers
 citations
 h-index
 g-index

 544
 23,393
 6.4
 7.45

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
521	Covalent Cross-Linked Polymer Gels with Reversible Sol G el Transition and Self-Healing Properties. <i>Macromolecules</i> , 2010 , 43, 1191-1194	5.5	528
520	Palladium-catalyzed oxidation of unsaturated hydrocarbons using molecular oxygen. <i>Accounts of Chemical Research</i> , 2012 , 45, 1736-48	24.3	454
519	A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 4054-	·8 ^{16.4}	449
518	Dynamic Hydrogels with an Environmental Adaptive Self-Healing Ability and Dual Responsive Sol-Gel Transitions <i>ACS Macro Letters</i> , 2012 , 1, 275-279	6.6	439
517	Transition metal-catalyzed C-H functionalization of N-oxyenamine internal oxidants. <i>Chemical Society Reviews</i> , 2015 , 44, 1155-71	58.5	426
516	Metal D rganic Framework Supported Gold Nanoparticles as a Highly Active Heterogeneous Catalyst for Aerobic Oxidation of Alcohols. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 13362-13369	3.8	266
515	Copper-catalyzed coupling of oxime acetates with sodium sulfinates: an efficient synthesis of sulfone derivatives. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 4205-8	16.4	242
514	Palladium-catalyzed diacetoxylation of alkenes with molecular oxygen as sole oxidant. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3846-7	16.4	213
513	Haloalkynes: a powerful and versatile building block in organic synthesis. <i>Accounts of Chemical Research</i> , 2014 , 47, 2483-504	24.3	210
512	Copper-catalyzed aerobic oxidative N-S bond functionalization for C-S bond formation: regio- and stereoselective synthesis of sulfones and thioethers. <i>Chemistry - A European Journal</i> , 2014 , 20, 7911-5	4.8	183
511	Palladium-catalyzed direct oxidation of alkenes with molecular oxygen: general and practical methods for the preparation of 1,2-diols, aldehydes, and ketones. <i>Journal of Organic Chemistry</i> , 2010 , 75, 2321-6	4.2	171
510	Copper-catalyzed aerobic C(sp2)-H functionalization for C-N bond formation: synthesis of pyrazoles and indazoles. <i>Journal of Organic Chemistry</i> , 2013 , 78, 3636-46	4.2	165
509	TBHP/I2-mediated domino oxidative cyclization for one-pot synthesis of polysubstituted oxazoles. <i>Organic Letters</i> , 2010 , 12, 5561-3	6.2	159
508	Synthesis of amides via palladium-catalyzed amidation of aryl halides. <i>Organic Letters</i> , 2011 , 13, 1028-3	16.2	158
507	One-pot silver-catalyzed and PIDa-mediated sequential reactions: synthesis of polysubstituted pyrroles directly from alkynoates and amines. <i>Organic Letters</i> , 2010 , 12, 312-5	6.2	155
506	Palladium-catalyzed cleavage reaction of carbon-carbon triple bond with molecular oxygen promoted by Lewis acid. <i>Journal of the American Chemical Society</i> , 2008 , 130, 5030-1	16.4	155
505	Conversion of pyridine to imidazo[1,2-a]pyridines by copper-catalyzed aerobic dehydrogenative cyclization with oxime esters. <i>Organic Letters</i> , 2013 , 15, 6254-7	6.2	149

(2010-2014)

Transition-metal-free synthesis of vinyl sulfones via tandem cross-decarboxylative/coupling reactions of sodium sulfinates and cinnamic acids. <i>Green Chemistry</i> , 2014 , 16, 3720-3723	10	137
Palladium supported on an acidic metal®rganic framework as an efficient catalyst in selective aerobic oxidation of alcohols. <i>Green Chemistry</i> , 2013 , 15, 230-235	10	136
Copper-catalyzed sulfonamides formation from sodium sulfinates and amines. <i>Chemical Communications</i> , 2013 , 49, 6102-4	5.8	129
Copper-Catalyzed Oxidative Carbon-Carbon and/or Carbon-Heteroatom Bond Formation with O or Internal Oxidants. <i>Accounts of Chemical Research</i> , 2018 , 51, 1092-1105	24.3	125
Copper-catalyzed C-O bond formation: an efficient one-pot highly regioselective synthesis of furans from (2-furyl)carbene complexes. <i>Organic Letters</i> , 2013 , 15, 1080-3	6.2	116
Copper-catalyzed intermolecular oxidative [3 + 2] cycloaddition between alkenes and anhydrides: a new synthetic approach to Elactones. <i>Journal of the American Chemical Society</i> , 2010 , 132, 17652-4	16.4	115
Polystyrene-Supported Amino Acids as Efficient Catalyst for Chemical Fixation of Carbon Dioxide. <i>Advanced Synthesis and Catalysis</i> , 2010 , 352, 1925-1933	5.6	115
Copper-catalyzed domino rearrangement/dehydrogenation oxidation/carbene oxidation for one-pot regiospecific synthesis of highly functionalized polysubstituted furans. <i>Organic Letters</i> , 2009 , 11, 1931-3	6.2	111
Copper-catalyzed synthesis of substituted benzothiazoles via condensation of 2-aminobenzenethiols with nitriles. <i>Organic Letters</i> , 2013 , 15, 1598-601	6.2	109
Recent advances in the synthesis of cyclopropanes. Organic and Biomolecular Chemistry, 2018, 16, 7315-	73329	109
A molecular Pd(II) complex incorporated into a MOF as a highly active single-site heterogeneous catalyst for Ctl bond activation. <i>Green Chemistry</i> , 2014 , 16, 3978	10	107
Base-promoted coupling of carbon dioxide, amines, and N-tosylhydrazones: a novel and versatile approach to carbamates. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 3084-7	16.4	107
An efficient synthesis of polysubstituted pyrroles via copper-catalyzed coupling of oxime acetates with dialkyl acetylenedicarboxylates under aerobic conditions. <i>Chemical Communications</i> , 2013 , 49, 959	7 ⁵ 9 ⁸	105
A Tuneable Bifunctional Water-Compatible Heterogeneous Catalyst for the Selective Aqueous Hydrogenation of Phenols. <i>Advanced Synthesis and Catalysis</i> , 2011 , 353, 3107-3113	5.6	101
Copper-Catalyzed Intermolecular Oxidative Cyclization of Halo- alkynes: Synthesis of 2-Halo-substituted Imidazo[1,2-a]pyridines, Imidazo[1,2-a]pyrazines and Imidazo[1,2-a]pyrimidines. <i>Advanced Synthesis and Catalysis</i> , 2013 , 355, 2263-2273	5.6	97
Copper(I)-catalyzed synthesis of 2,5-disubstituted furans and thiophenes from haloalkynes or 1,3-diynes. <i>Journal of Organic Chemistry</i> , 2012 , 77, 5179-83	4.2	95
Copper-catalyzed oxidative [2 + 2 + 1] cycloaddition: regioselective synthesis of 1,3-oxazoles from internal alkynes and nitriles. <i>Chemical Science</i> , 2012 , 3, 3463	9.4	94
A Highly Active Heterogeneous Palladium Catalyst for the SuzukiMiyaura and Ullmann Coupling Reactions of Aryl Chlorides in Aqueous Media. <i>Angewandte Chemie</i> , 2010 , 122, 4148-4152	3.6	94
	Palladium supported on an acidic metalibrganic framework as an efficient catalyst in selective aerobic oxidation of alcohols. <i>Green Chemistry,</i> 2013, 15, 230-235 Copper-catalyzed sulfonamides formation from sodium sulfinates and amines. <i>Chemical Communications,</i> 2013, 49, 6102-4 Copper-Catalyzed Oxidative Carbon-Carbon and/or Carbon-Heteroatom Bond Formation with O or Internal Oxidants. <i>Accounts of Chemical Research,</i> 2018, 51, 1092-1105 Copper-catalyzed C-O bond formation: an efficient one-pot highly regioselective synthesis of furans from (2-furyl)carbene complexes. <i>Organic Letters,</i> 2013, 15, 1080-3 Copper-catalyzed intermolecular oxidative [3 + 2] cycloaddition between alkenes and anhydrides: a new synthetic approach to Bactones. <i>Journal of the American Chemical Society,</i> 2010, 132, 17652-4 Polystyrene-Supported Amino Acids as Efficient Catalyst for Chemical Fixation of Carbon Dioxide. <i>Advanced Synthesis and Catalysis,</i> 2010, 352, 1925-1933 Copper-catalyzed domino rearrangement/dehydrogenation oxidation/carbene oxidation for one-pot regiospecific synthesis of highly functionalized polysubstituted furans. <i>Organic Letters,</i> 2009, 11, 1931-3 Copper-catalyzed synthesis of substituted benzothiazoles via condensation of 2-aminobenzenethiols with nitriles. <i>Organic Letters,</i> 2013, 15, 1598-601 Recent advances in the synthesis of cyclopropanes. <i>Organic and Biomolecular Chemistry,</i> 2018, 16, 7315-24. A molecular Pd(II) complex incorporated into a MOF as a highly active single-site heterogeneous catalyst for CEII bond activation. <i>Green Chemistry,</i> 2014, 16, 3978 Base-promoted coupling of carbon dioxide, amines, and N-tosylhydrazones: a novel and versatile approach to carbamates. <i>Angewandte Chemie - International Edition,</i> 2015, 54, 3084-7 An efficient synthesis of polysubstituted pyrroles via copper-catalyzed coupling of oxime acetates with dialkyl acetylenedicarboxylates under aerobic conditions. <i>Chemical Communications,</i> 2013, 49, 959 A Tuneable Bifunctional Water-Compatible Heterogeneous Cat	Palladium supported on an acidic metalligranic framework as an efficient catalyst in selective aerobic oxidation of alcohols. <i>Green Chemistry</i> , 2013, 15, 230-235 Copper-catalyzed sulfonamides formation from sodium sulfinates and amines. <i>Chemical Communications</i> , 2013, 49, 6102-4 Copper-Catalyzed Oxidative Carbon-Carbon and/or Carbon-Heteroatom Bond Formation with O or Internal Oxidants. <i>Accounts of Chemical Research</i> , 2018, 51, 1092-1105 Copper-catalyzed C-O bond formation: an efficient one-pot highly regioselective synthesis of furans from (2-furyl)carbene complexes. <i>Organic Letters</i> , 2013, 15, 1080-3 Copper-catalyzed intermolecular oxidative [3 + 2] cycloaddition between alkenes and anhydrides: a new synthetic approach to flactones. <i>Journal of the American Chemical Society</i> , 2010, 132, 17652-4 Polystyrene-Supported Amino Acids as Efficient Catalyst for Chemical Fixation of Carbon Dioxide. <i>Advanced Synthesis and Catalysis</i> , 2010, 352, 1925-1933 Copper-catalyzed domline rearrangement/dehydrogenation oxidation/carbene oxidation for one-pot regiospecific synthesis of highly functionalized polysubstituted furans. <i>Organic Letters</i> , 2009, 11, 1931-3 Copper-catalyzed synthesis of substituted benzothiazoles via condensation of 2-aminobenzenethiols with nitriles. <i>Organic Letters</i> , 2013, 15, 1598-601 A molecular Pd(II) complex incorporated into a MOF as a highly active single-site heterogeneous catalyst for Cttl bond activation. <i>Green Chemistry</i> , 2014, 16, 3978 Base-promoted coupling of carbon dioxide, amines, and N-tosylhydrazones: a novel and versatile approach to carbamates. <i>Angewandte Chemie - International Edition</i> , 2015, 54, 3084-7 An efficient synthesis of polysubstituted pyrroles via copper-catalyzed coupling of oxime acetates with dialsyl acetylenedicarboxylates under aerobic conditions. <i>Chemical Communications</i> , 2013, 49, 959759 A Tuneable Bifunctional Water-Compatible Heterogeneous Catalyst for the Selective Aqueous Hydrogenation of Phenols. <i>Advanced Synthesis and Catalysis</i> , 2011, 353,

486	NHC-AuCl/selectfluor: a highly efficient catalytic system for carbene-transfer reactions. <i>Organic Letters</i> , 2014 , 16, 4472-5	6.2	93
485	Palladium-catalyzed sequential formation of C-C bonds: efficient assembly of 2-substituted and 2,3-disubstituted quinolines. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 7292-6	16.4	93
484	Ag-Catalyzed Oxidative Cyclization Reaction of 1,6-Enynes and Sodium Sulfinate: Access to Sulfonylated Benzofurans. <i>Organic Letters</i> , 2017 , 19, 2825-2828	6.2	88
483	Rh(III)-catalyzed ortho-oxidative alkylation of unactivated arenes with allylic alcohols. <i>Chemical Science</i> , 2013 , 4, 2665	9.4	88
482	Facile synthesis of benzofurans via copper-catalyzed aerobic oxidative cyclization of phenols and alkynes. <i>Chemical Communications</i> , 2013 , 49, 6611-3	5.8	88
481	Ni(salphen)-based metalbrganic framework for the synthesis of cyclic carbonates by cycloaddition of CO2 to epoxides. <i>RSC Advances</i> , 2013 , 3, 2167	3.7	87
480	A chiral mixed metal-organic framework based on a Ni(saldpen) metalloligand: synthesis, characterization and catalytic performances. <i>Dalton Transactions</i> , 2013 , 42, 9930-7	4.3	87
479	Expedient synthesis of functionalized conjugated enynes: palladium-catalyzed bromoalkynylation of alkynes. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 3338-41	16.4	87
478	Convenient one-pot synthesis of multisubstituted tetrahydropyrimidines via catalyst-free multicomponent reactions. <i>Organic Letters</i> , 2007 , 9, 4111-3	6.2	87
477	Palladium-catalyzed cascade annulation to construct functionalized <code>#and</code> <code>Hactones</code> in ionic liquids. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 7219-22	16.4	85
476	Palladium-catalyzed bromoalkynylation of C-C double bonds: ring-structure-dependent synthesis of 7-alkynyl norbornanes and cyclobutenyl halides. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 6341-5	16.4	85
475	Palladium-catalyzed intermolecular dehydrogenative aminohalogenation of alkenes under molecular oxygen: an approach to brominated enamines. <i>Journal of the American Chemical Society</i> , 2013 , 135, 5286-9	16.4	84
474	Copper-Catalyzed Regioselective C-H Sulfonylation of 8-Aminoquinolines. <i>Journal of Organic Chemistry</i> , 2016 , 81, 946-55	4.2	83
473	Copper-catalyzed formal C-N bond cleavage of aromatic methylamines: assembly of pyridine derivatives. <i>Journal of Organic Chemistry</i> , 2013 , 78, 3774-82	4.2	83
472	Palladium-catalyzed allylation of alkynes with allyl alcohol in aqueous media: highly regio- and stereoselective synthesis of 1,4-dienes. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 1945-9	16.4	83
471	Cu-Catalyzed Three-Component Cascade Annulation Reaction: An Entry to Functionalized Pyridines. <i>Journal of Organic Chemistry</i> , 2015 , 80, 8763-71	4.2	82
470	Copper-Catalyzed Coupling of Oxime Acetates with Isothiocyanates: A Strategy for 2-Aminothiazoles. <i>Organic Letters</i> , 2016 , 18, 180-3	6.2	82
469	Rh(III)-Catalyzed [4 + 2] Annulation of Indoles with Diazo Compounds: Access to Pyrimido[1,6-a]indole-1(2H)-ones. <i>Organic Letters</i> , 2016 , 18, 192-5	6.2	80

468	Silver-catalyzed difunctionalization of terminal alkynes: highly regio- and stereoselective synthesis of (Z)-beta-haloenol acetates. <i>Organic Letters</i> , 2010 , 12, 3262-5	6.2	80	
467	Iron-catalyzed domino process for the synthesis of alpha-carbonyl furan derivatives via one-pot cyclization reaction. <i>Journal of Organic Chemistry</i> , 2010 , 75, 5347-50	4.2	80	
466	Chemoselective Synthesis of Unsymmetrical Internal Alkynes or Vinyl Sulfones via Palladium-Catalyzed Cross-Coupling Reaction of Sodium Sulfinates with Alkynes. <i>Advanced Synthesis and Catalysis</i> , 2014 , 356, 2029-2039	5.6	78	
465	Recent advances in organic synthesis with CO 2 as C1 synthon. <i>Current Opinion in Green and Sustainable Chemistry</i> , 2017 , 3, 22-27	7.9	77	
464	Switch of selectivity in the synthesis of Emethylene-Elactones: palladium-catalyzed intermolecular carboesterification of alkenes with alkynes. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 5696-7	d6·4	77	
463	Transition-metal-free homocoupling of 1-haloalkynes: a facile synthesis of symmetrical 1,3-diynes. <i>Journal of Organic Chemistry</i> , 2010 , 75, 6700-3	4.2	77	
462	Palladium-Catalyzed Oxidative Sulfenylation of Indoles and Related Electron-Rich Heteroarenes with Aryl Boronic Acids and Elemental Sulfur. <i>Journal of Organic Chemistry</i> , 2016 , 81, 7771-83	4.2	77	
461	A Conjugated Polymeric Supramolecular Network with Aggregation-Induced Emission Enhancement: An Efficient Light-Harvesting System with an Ultrahigh Antenna Effect. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9908-9913	16.4	77	
460	Polystyrene-Supported N-Heterocyclic CarbeneBilver Complexes as Robust and Efficient Catalysts for the Reaction of Carbon Dioxide and Propargylic Alcohols. <i>Advanced Synthesis and Catalysis</i> , 2013 , 355, 2019-2028	5.6	76	
459	Hydrogen-Transfer-Mediated & Functionalization of 1,8-Naphthyridines by a Strategy Overcoming the Over-Hydrogenation Barrier. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 14232-14236	16.4	75	
458	Reusable Polymer-Supported Amine-Copper Catalyst for the Formation of Halkylidene Cyclic Carbonates in Supercritical Carbon Dioxide. <i>European Journal of Organic Chemistry</i> , 2008 , 2008, 2309-23	132 ²	75	
457	A novel ruthenium-catalyzed dehydrogenative synthesis of 2-arylquinazolines from 2-aminoaryl methanols and benzonitriles. <i>Organic Letters</i> , 2014 , 16, 6028-31	6.2	74	
456	Silver-catalyzed activation of internal propargylic alcohols in supercritical carbon dioxide: efficient and eco-friendly synthesis of 4-alkylidene-1,3-oxazolidin-2-ones. <i>Tetrahedron Letters</i> , 2009 , 50, 60-62	2	74	
455	Co(III)-Catalyzed Coupling-Cyclization of Aryl CH Bonds with Diazoketones Involving Wolff Rearrangement. <i>ACS Catalysis</i> , 2018 , 8, 1308-1312	13.1	73	
454	Cu(I)-catalyzed transannulation of N-heteroaryl aldehydes or ketones with alkylamines via C(sp3)-H amination. <i>Organic Letters</i> , 2014 , 16, 6232-5	6.2	73	
453	Direct Reductive Quinolyl 配田 Alkylation by Multispherical Cavity Carbon-Supported Cobalt Oxide Nanocatalysts. <i>ACS Catalysis</i> , 2017 , 7, 4780-4785	13.1	72	
452	Ruthenium(II)-catalyzed direct addition of indole/pyrrole C2-H bonds to alkynes. <i>Journal of Organic Chemistry</i> , 2014 , 79, 9472-80	4.2	72	
451	Practical synthesis of pyrazoles via a copper-catalyzed relay oxidation strategy. <i>Chemical Communications</i> , 2014 , 50, 14793-6	5.8	72	

450	Palladium-catalyzed intermolecular aerobic oxidative cyclization of 2-ethynylanilines with isocyanides: regioselective synthesis of 4-halo-2-aminoquinolines. <i>Journal of Organic Chemistry</i> , 2013 , 78, 10319-28	4.2	72
449	Copper-Catalyzed Oxidative C(sp(3))-H Functionalization for Facile Synthesis of 1,2,4-Triazoles and 1,3,5-Triazines from Amidines. <i>Organic Letters</i> , 2015 , 17, 2894-7	6.2	72
448	Recent Advances in Pd-Catalyzed Cross-Coupling Reaction in Ionic Liquids. <i>European Journal of Organic Chemistry</i> , 2018 , 2018, 1284-1306	3.2	72
447	Efficient synthesis of quinoxalines from 2-nitroanilines and vicinal diols via a ruthenium-catalyzed hydrogen transfer strategy. <i>Green Chemistry</i> , 2015 , 17, 279-284	10	71
446	Highly efficient two-step synthesis of (Z)-2-halo-1-iodoalkenes from terminal alkynes. <i>Chemical Communications</i> , 2010 , 46, 8049-51	5.8	70
445	Dual Catalysis: Proton/Metal-Catalyzed Tandem Benzofuran Annulation/Carbene Transfer Reaction. <i>Organic Letters</i> , 2016 , 18, 1322-5	6.2	69
444	Pd-catalyzed and CsF-promoted reaction of bromoalkynes with isocyanides: regioselective synthesis of substituted 5-iminopyrrolones. <i>Chemical Communications</i> , 2012 , 48, 3545-7	5.8	69
443	Copper-catalyzed aerobic oxidative transformation of ketone-derived N-tosyl hydrazones: an entry to alkynes. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 14485-9	16.4	68
442	Silver-Assisted Difunctionalization of Terminal Alkynes: Highly Regio- and Stereoselective Synthesis of Bromofluoroalkenes. <i>Advanced Synthesis and Catalysis</i> , 2012 , 354, 2683-2688	5.6	67
441	Copper-Catalyzed Aerobic Oxidative Regioselective Thiocyanation of Aromatics and Heteroaromatics. <i>Journal of Organic Chemistry</i> , 2017 , 82, 9312-9320	4.2	66
440	Synthesis of 2-aminobenzoxazoles and 3-aminobenzoxazines via palladium-catalyzed aerobic oxidation of o-aminophenols with isocyanides. <i>Journal of Organic Chemistry</i> , 2013 , 78, 3009-20	4.2	65
439	Silver-Catalyzed One-Pot Cyclization Reaction of Electron- Deficient Alkynes and 2-Yn-1-ols: An Efficient Domino Process to Polysubstituted Furans. <i>Advanced Synthesis and Catalysis</i> , 2010 , 352, 143-1	5 2 .6	65
438	Iron-Catalyzed Synthesis of 2H-Imidazoles from Oxime Acetates and Vinyl Azides under Redox-Neutral Conditions. <i>Organic Letters</i> , 2017 , 19, 1370-1373	6.2	64
437	Synthesis of sulfonamides via I2-mediated reaction of sodium sulfinates with amines in an aqueous medium at room temperature. <i>Green Chemistry</i> , 2015 , 17, 1400-1403	10	64
436	Pd-Catalyzed Highly Regio- and Stereoselective Formation of C-C Double Bonds: An Efficient Method for the Synthesis of Benzofuran-, Dihydrobenzofuran-, and Indoline-Containing Alkenes. <i>Journal of Organic Chemistry</i> , 2015 , 80, 7456-67	4.2	62
435	Palladium-catalyzed tandem reaction of o-aminophenols, bromoalkynes and isocyanides to give 4-amine-benzo[b][1,4]oxazepines. <i>Chemical Communications</i> , 2012 , 48, 11446-8	5.8	62
434	Assembly of 3-Sulfenylbenzofurans and 3-Sulfenylindoles by Palladium-Catalyzed Cascade Annulation/Arylthiolation Reaction. <i>Journal of Organic Chemistry</i> , 2016 , 81, 2875-87	4.2	61
433	Efficient synthesis of tertiary hydroxy ketones through CO2-promoted regioselective hydration of propargylic alcohols. <i>Green Chemistry</i> , 2014 , 16, 3729-3733	10	61

432	Synthesis of enaminones via copper-catalyzed decarboxylative coupling reaction under redox-neutral conditions. <i>Chemical Communications</i> , 2017 , 53, 3228-3231	5.8	60
431	Palladium-catalyzed oxidative coupling of aromatic primary amines and alkenes under molecular oxygen: stereoselective assembly of (Z)-enamines. <i>Journal of Organic Chemistry</i> , 2013 , 78, 11155-62	4.2	60
430	Co(II)-Catalyzed Regioselective Cross-Dehydrogenative Coupling of Aryl C-H Bonds with Carboxylic Acids. <i>Organic Letters</i> , 2017 , 19, 4279-4282	6.2	59
429	Facile synthesis of (E)-alkenyl aldehydes from allyl arenes or alkenes via Pd(II)-catalyzed direct oxygenation of allylic C-H bond. <i>Organic Letters</i> , 2011 , 13, 992-4	6.2	59
428	Efficient synthesis of 眇xopropylcarbamates in compressed CO2 without any additional catalyst and solvent. <i>Green Chemistry</i> , 2007 , 9, 1284	10	59
427	Mechanistic insight into transition metal-catalyzed reaction of enynal/enynone with alkenes: metal-dependent reaction pathway. <i>Journal of Organic Chemistry</i> , 2014 , 79, 6113-22	4.2	58
426	Palladium-catalyzed Heck-type reaction of oximes with allylic alcohols: synthesis of pyridines and azafluorenones. <i>Chemical Communications</i> , 2016 , 52, 84-7	5.8	57
425	Macroscopic Organohydrogel Hybrid from Rapid Adhesion between Dynamic Covalent Hydrogel and Organogel. <i>ACS Macro Letters</i> , 2015 , 4, 467-471	6.6	57
424	A novel iridium/acid co-catalyzed transfer hydrogenative C(sp(3))-H bond alkylation to access functionalized N-heteroaromatics. <i>Chemical Communications</i> , 2016 , 52, 9359-62	5.8	57
423	Iron-catalyzed benzannulation reactions of 2-alkylbenzaldehydes and alkynes leading to naphthalene derivatives. <i>Organic Letters</i> , 2013 , 15, 898-901	6.2	57
422	Copper-Catalyzed C(sp)-H/C(sp)-H Cross-Dehydrogenative Coupling with Internal Oxidants: Synthesis of 2-Trifluoromethyl-Substituted Dihydropyrrol-2-ols. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 13324-13328	16.4	57
421	A novel entry to functionalized benzofurans and indoles via palladium(0)-catalyzed arylative dearomatization of furans. <i>Organic Letters</i> , 2012 , 14, 1098-101	6.2	57
420	Highly regioselective palladium-catalysed oxidative allylic C-H carbonylation of alkenes. <i>Chemical Communications</i> , 2011 , 47, 12224-6	5.8	57
419	Synthesis of Sulfonylated Lactones via Ag-Catalyzed Cascade Sulfonylation/Cyclization of 1,6-Enynes with Sodium Sulfinates. <i>Journal of Organic Chemistry</i> , 2017 , 82, 1224-1230	4.2	56
418	NBS-promoted halosulfonylation of terminal alkynes: highly regio- and stereoselective synthesis of (E)-malo vinylsulfones. <i>Organic Chemistry Frontiers</i> , 2014 , 1, 361-364	5.2	56
417	A novel straightforward synthesis of 2,4-disubstituted-1,3,5-triazines via aerobic copper-catalyzed cyclization of amidines with DMF. <i>Organic Letters</i> , 2014 , 16, 3540-3	6.2	56
416	Practical Synthesis of Polysubstituted Imidazoles via Iodine- Catalyzed Aerobic Oxidative Cyclization of Aryl Ketones and Benzylamines. <i>Advanced Synthesis and Catalysis</i> , 2013 , 355, 170-180	5.6	56
415	Gold-catalyzed reactions of enynals/enynones with norbornenes: generation and trapping of cyclic o-quinodimethanes (o-QDMs). <i>Chemistry - A European Journal</i> , 2013 , 19, 4695-700	4.8	56

414	A Novel Entry to Spirofurooxindoles Involving Tandem Dearomatization of Furan Ring and Intramolecular Friedel©crafts Reaction. <i>Advanced Synthesis and Catalysis</i> , 2011 , 353, 1961-1965	.6	56
413	Ruthenium-Catalyzed Dehydrogenative Benzylation of 1,2,3,4-Tetrahydroquinolines with Aryl Aldehydes: Access to Functionalized Quinolines. <i>Organic Letters</i> , 2016 , 18, 3174-7	.2	55
412	Csp(3)-P versus Csp(2)-P Bond Formation: Catalyst-Controlled Highly Regioselective Tandem Reaction of Ene-Yne-Ketones with H-Phosphonates. <i>Organic Letters</i> , 2016 , 18, 400-3	.2	55
411	Hydrogen-Transfer-Mediated Direct 🖺 lkylation of Aryl-1,8-naphthyridines with Alcohols under Transition Metal Catalyst Free Conditions. <i>Organic Letters</i> , 2016 , 18, 724-7	.2	55
410	Bioinspired intramolecular Diels-Alder reaction: a rapid access to the highly-strained cyclopropane-fused polycyclic skeleton. <i>Chemistry - A European Journal</i> , 2014 , 20, 2425-30	.8	55
409	Nano-Cu(2)O-catalyzed formation of C-C and C-O bonds: one-pot domino process for regioselective synthesis of Earbonyl Furans from electron-deficient alkynes and 2-yn-1-ols. <i>Chemistry - A</i> European Journal, 2010 , 16, 10553-9	.8	55
408	A New Type of Lewis Acid B ase Bifunctional M(salphen) (M=Zn, Cu and Ni) Catalysts for CO2 Fixation. <i>ChemCatChem</i> , 2015 , 7, 1535-1538	.2	54
407	Highly Chemo- and Stereoselective Catalyst-Controlled Allylic C-H Insertion and Cyclopropanation Using Donor/Donor Carbenes. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 12405-12409	6.4	54
406	Palladium-catalyzed acetoxylation of sp3 C-H bonds using molecular oxygen. <i>Chemical Communications</i> , 2010 , 46, 7259-61	.8	54
405	Palladium-Catalyzed Intermolecular Aerobic Annulation of o-Alkenylanilines and Alkynes for Quinoline Synthesis. <i>Organic Letters</i> , 2016 , 18, 3514-7	.2	53
404	Palladium-catalyzed oxidative annulation of acrylic acid and amide with alkynes: a practical route to synthesize pyrones and pyridones. <i>Organic Letters</i> , 2014 , 16, 2146-9	.2	53
403	Copper-Promoted Coupling of Carbon Dioxide and Propargylic Alcohols: Expansion of Substrate Scope and Trapping of Vinyl Copper Intermediate. <i>Advanced Synthesis and Catalysis</i> , 2015 , 357, 2556-2565	. 6	53
402	Development, scope and mechanisms of multicomponent reactions of asymmetric electron-deficient alkynes with amines and formaldehyde. <i>Chemistry - A European Journal</i> , 2008 , 14, 11623	3 ⁸ 33	53
401	Iridium(III)-Catalyzed Regioselective Intermolecular Unactivated Secondary Csp(3) -H Bond Amidation. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 11897-901	6.4	52
400	Palladium-Catalyzed C-H Functionalization of Aromatic Oximes: A Strategy for the Synthesis of Isoquinolines. <i>Journal of Organic Chemistry</i> , 2016 , 81, 1401-9	.2	52
399	MOF-Derived Nanocobalt for Oxidative Functionalization of Cyclic Amines to Quinazolinones with 2-Aminoarylmethanols. <i>ACS Catalysis</i> , 2018 , 8, 5869-5874	3.1	52
398	Palladium-Catalyzed Sequential Nucleophilic Addition/Oxidative Annulation of Bromoalkynes with Benzoic Acids To Construct Functionalized Isocoumarins. <i>Organic Letters</i> , 2017 , 19, 4440-4443	.2	51
397	An efficient ruthenium-catalyzed dehydrogenative synthesis of 2,4,6-triaryl-1,3,5-triazines from aryl methanols and amidines. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 2761-8	.9	50

(2011-2014)

396	Copper-Catalyzed Coupling of Oxime Acetates with Sodium Sulfinates: An Efficient Synthesis of Sulfone Derivatives. <i>Angewandte Chemie</i> , 2014 , 126, 4289-4292	3.6	50	
395	Palladium-Catalyzed C?C Coupling of Aryl Halides with Isocyanides: An Alternative Method for the Stereoselective Synthesis of (3E)-(Imino)isoindolin-1-ones and (3E)-(Imino)thiaisoindoline 1,1-Dioxides. <i>Advanced Synthesis and Catalysis</i> , 2012 , 354, 2288-2300	5.6	50	
394	Palladium-Catalyzed Alkenylation of 1,2,3-Trizoles with Terminal Conjugated Alkenes by Direct CE Bond Functionalization. <i>European Journal of Organic Chemistry</i> , 2010 , 2010, 1227-1230	3.2	50	
393	Silver-Catalyzed Regio- and Stereoselective Thiocyanation of Haloalkynes: Access to (Z)-Vinyl Thiocyanates. <i>Advanced Synthesis and Catalysis</i> , 2017 , 359, 1208-1212	5.6	49	
392	Development of Isostructural Porphyrin-Salen Chiral Metal-Organic Frameworks through Postsynthetic Metalation Based on Single-Crystal to Single-Crystal Transformation. <i>Inorganic Chemistry</i> , 2018 , 57, 1203-1212	5.1	49	
391	A [4 + 1] Cyclative Capture Access to Indolizines via Cobalt(III)-Catalyzed Csp(2)-H Bond Functionalization. <i>Organic Letters</i> , 2016 , 18, 4742-5	6.2	49	
390	Access to Thiazole via Copper-Catalyzed [3+1+1]-Type Condensation Reaction under Redox-Neutral Conditions. <i>Journal of Organic Chemistry</i> , 2016 , 81, 11461-11466	4.2	49	
389	Nucleopalladation triggering the oxidative Heck reaction: a general strategy to diverse #Indole ketones. <i>Organic Letters</i> , 2013 , 15, 5940-3	6.2	49	
388	Recent developments in palladium-catalyzed CB bond formation. <i>Organic Chemistry Frontiers</i> , 2020 , 7, 1395-1417	5.2	49	
387	Pd-Catalyzed C-H activation/oxidative cyclization of acetanilide with norbornene: concise access to functionalized indolines. <i>Chemical Communications</i> , 2014 , 50, 8370-3	5.8	48	
386	Palladium-catalyzed intermolecular oxyvinylcyclization of alkenes with alkynes: an approach to 3-methylene Elactones and tetrahydrofurans. <i>Journal of Organic Chemistry</i> , 2014 , 79, 10734-42	4.2	47	
385	Pd(II)-catalyzed sequential C-C/C-O bond formations: a new strategy to construct trisubstituted furans. <i>Organic Letters</i> , 2013 , 15, 1838-41	6.2	47	
384	L-proline-catalyzed synthesis of highly functionalized multisubstituted 1,4-dihydropyridines. <i>Organic and Biomolecular Chemistry</i> , 2009 , 7, 4943-53	3.9	47	
383	A Route to Polysubstituted Aziridines from Carbenes and Imines through a Nondiazo Approach. <i>Organic Letters</i> , 2016 , 18, 5208-5211	6.2	47	
382	Palladium-catalyzed aerobic oxidative allylic C-H arylation of alkenes with polyfluorobenzenes. <i>Chemical Communications</i> , 2014 , 50, 7202-4	5.8	46	
381	The first porphyrin-salen based chiral metal-organic framework for asymmetric cyanosilylation of aldehydes. <i>Chemical Communications</i> , 2017 , 53, 8223-8226	5.8	46	
380	Highly selective	6.2	46	
379	Acetoxypalladation of unactivated alkynes and capture with alkenes to give 1-acetoxy-1,3-dienes taking dioxygen as terminal oxidant. <i>Chemical Communications</i> , 2011 , 47, 1003-5	5.8	46	

378	Palladium-catalyzed Csp(2)-H carbonylation of aromatic oximes: selective access to benzo[d][1,2]oxazin-1-ones and 3-methyleneisoindolin-1-ones. <i>Chemical Communications</i> , 2015 , 51, 684	3 ⁵ 6 ⁸	45
377	Palladium-catalyzed sequential C-N/C-O bond formations: synthesis of oxazole derivatives from amides and ketones. <i>Organic Letters</i> , 2014 , 16, 5906-9	6.2	45
376	Palladium-catalyzed regioselective azidation of allylic C-H bonds under atmospheric pressure of dioxygen. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 3340-3	3.9	45
375	Ruthenium-Catalyzed Straightforward Synthesis of 1,2,3,4-Tetrahydronaphthyridines via Selective Transfer Hydrogenation of Pyridyl Ring with Alcohols. <i>Organic Letters</i> , 2015 , 17, 4054-7	6.2	44
374	Base-promoted coupling of carbon dioxide, amines, and diaryliodonium salts: a phosgene- and metal-free route to O-aryl carbamates. <i>Chemistry - A European Journal</i> , 2015 , 21, 14314-8	4.8	44
373	Facile synthesis of 3a,6a-dihydro-furo[2,3-b]furans and polysubstituted furans involving dearomatization of furan ring via electrocyclic ring-closure. <i>Organic Letters</i> , 2012 , 14, 616-9	6.2	44
372	Palladium-Catalyzed Oxidative Allylation of Sulfoxonium Ylides: Regioselective Synthesis of Conjugated Dienones. <i>Organic Letters</i> , 2019 , 21, 872-875	6.2	43
371	Calcium carbide as the acetylide source: transition-metal-free synthesis of substituted pyrazoles via [1,5]-sigmatropic rearrangements. <i>Green Chemistry</i> , 2016 , 18, 6445-6449	10	43
370	Palladium-catalyzed oxidative carbonylation for the synthesis of polycyclic aromatic hydrocarbons (PAHs). <i>Journal of Organic Chemistry</i> , 2014 , 79, 11246-53	4.2	43
369	Palladium-catalyzed selective aminoamidation and aminocyanation of alkenes using isonitrile as amide and cyanide sources. <i>Chemical Communications</i> , 2014 , 50, 15348-51	5.8	43
368	An efficient route to polysubstituted tetrahydronaphthols: silver-catalyzed [4+2] cyclization of 2-alkylbenzaldehydes and alkenes. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 10861-5	16.4	43
367	Ligand-free coupling of phenols and alcohols with aryl halides by a recyclable heterogeneous copper catalyst. <i>RSC Advances</i> , 2012 , 2, 5528	3.7	43
366	Water-triggered, counter-anion-controlled, and silver-phosphines complex-catalyzed stereoselective cascade alkynylation/cyclization of terminal alkynes with salicylaldehydes. <i>Journal of Organic Chemistry</i> , 2009 , 74, 3378-83	4.2	43
365	Palladium-catalyzed tandem annulation: a strategy to construct 2,3-difunctionalized benzofuran derivatives in ionic liquids. <i>Journal of Organic Chemistry</i> , 2015 , 80, 3870-9	4.2	42
364	Synergistic Catalysis: Metal/Proton-Catalyzed Cyclization of Alkynones Toward Bicyclo[3.n.1]alkanones. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 9414-8	16.4	42
363	1,4-Phenylenediacetate-Based Ln MOFs	2.3	42
362	An annulative transfer hydrogenation strategy enables straightforward access to tetrahydro fused-pyrazine derivatives. <i>Chemical Communications</i> , 2016 , 52, 10636-9	5.8	42
361	Iodine-catalyzed cascade annulation of alkynes with sodium arylsulfinates: assembly of 3-sulfenylcoumarin and 3-sulfenylquinolinone derivatives. <i>Organic Chemistry Frontiers</i> , 2017 , 4, 1751-17	'56 ²	41

(2015-2017)

360	A Four-Component Reaction Strategy for Pyrimidine Carboxamide Synthesis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 1289-1293	16.4	41
359	Carbon-carbon bond formation: palladium-catalyzed oxidative cross-coupling of N-tosylhydrazones with allylic alcohols. <i>Chemistry - A European Journal</i> , 2012 , 18, 10497-500	4.8	41
358	Palladium-catalyzed 1,4-addition of terminal alkynes to unsaturated carbonyl compounds promoted by electron-rich ligands. <i>Organic and Biomolecular Chemistry</i> , 2008 , 6, 2969-77	3.9	41
357	Palladium-Catalyzed Redox-Neutral N-O/C(sp)-H Functionalization of Aryl Oximes with Isocyanides. <i>Organic Letters</i> , 2017 , 19, 678-681	6.2	40
356	Palladium-Catalyzed Fluoroalkylative Cyclization of Olefins. <i>Organic Letters</i> , 2017 , 19, 1008-1011	6.2	40
355	Highly stereoselective ruthenium(II)-catalyzed direct C2-syn-alkenylation of indoles with alkynes. <i>Organic Letters</i> , 2015 , 17, 1349-52	6.2	40
354	Synthesis of Ebromo Hunsaturated carbonyl compounds via palladium-catalyzed bromoalkylation of alkynoates. <i>Journal of Organic Chemistry</i> , 2012 , 77, 2029-34	4.2	40
353	Copper-Catalyzed Oxysulfenylation of Enolates with Sodium Sulfinates: A Strategy To Construct Sulfenylated Cyclic Ethers. <i>Organic Letters</i> , 2016 , 18, 1158-61	6.2	39
352	Diastereospecific and Enantioselective Access to Dispirooxindoles from Furfurylcyclobutanols by Means of a Pd-Catalyzed Arylative Dearomatization/Ring Expansion Cascade. <i>Organic Letters</i> , 2016 , 18, 6440-6443	6.2	39
351	A chiral salen-based MOF catalytic material with high thermal, aqueous and chemical stabilities. <i>Dalton Transactions</i> , 2017 , 46, 7821-7832	4.3	38
350	Palladium-Catalyzed Direct Oxidative C?H Cross-Coupling of Azoarenes with Alcohols. <i>Advanced Synthesis and Catalysis</i> , 2014 , 356, 519-527	5.6	38
349	Novel palladium-catalyzed cascade carboxylative annulation to construct functionalized Elactones in ionic liquids. <i>Chemical Communications</i> , 2014 , 50, 1381-3	5.8	38
348	Copper-catalyzed cyanothiolation to incorporate a sulfur-substituted quaternary carbon center. <i>Chemical Science</i> , 2017 , 8, 7047-7051	9.4	38
347	Highly chemoselective palladium-catalyzed cross-trimerization between alkyne and alkenes leading to 1,3,5-trienes or 1,2,4,5-tetrasubstituted benzenes with dioxygen. <i>Journal of Organic Chemistry</i> , 2010 , 75, 8279-82	4.2	38
346	PdCl2(HNMe2)2-catalyzed highly selective cross [2 + 2 + 2] cyclization of alkynoates and alkenes under molecular oxygen. <i>Journal of Organic Chemistry</i> , 2010 , 75, 1321-4	4.2	38
345	Recent advances in three-component difunctionalization of -difluoroalkenes. <i>Chemical Communications</i> , 2020 , 56, 10442-10452	5.8	38
344	Palladium-Catalyzed Oxidation Reactions of Alkenes with Green Oxidants. <i>ChemSusChem</i> , 2019 , 12, 29	11 8 2 ₃ 93	5 37
343	Rh(III)-catalyzed chelation-assisted intermolecular carbenoid functionalization of \(\text{\text{H}mino Csp(3)-H}\) bonds. Chemical Communications, 2015 , 51, 15328-31	5.8	37

342	Copper-catalyzed coupling of oxime acetates and aryldiazonium salts: an azide-free strategy toward N-2-aryl-1,2,3-triazoles. <i>Organic Chemistry Frontiers</i> , 2018 , 5, 571-576	5.2	37
341	Palladium-Catalyzed Allylic C-H Oxidative Annulation for Assembly of Functionalized 2-Substituted Quinoline Derivatives. <i>Journal of Organic Chemistry</i> , 2016 , 81, 12189-12196	4.2	37
340	Transition-Metal-Free Cyclopropanation of 2-Aminoacrylates with N-Tosylhydrazones: A General Route to Cyclopropane Amino Acid with Contiguous Quaternary Carbon Centers. <i>Organic Letters</i> , 2016 , 18, 1470-3	6.2	37
339	Aerobic Copper-Catalyzed Halocyclization of Methyl N-Heteroaromatics with Aliphatic Amines: Access to Functionalized Imidazo-Fused N-Heterocycles. <i>Journal of Organic Chemistry</i> , 2016 , 81, 9939-9	9 46	37
338	Convenient Synthesis of Quinolines from ⊉-Nitroaryl Alcohols and Alcohols via a Ruthenium-catalyzed Hydrogen Transfer Strategy. <i>ChemCatChem</i> , 2015 , 7, 349-353	5.2	36
337	Palladium-catalyzed dearomatizing 2,5-alkoxyarylation of furan rings: diastereospecific access to spirooxindoles. <i>Chemical Communications</i> , 2016 , 52, 9550-3	5.8	36
336	Palladium-Catalyzed Multicomponent Reaction (MCR) of Propargylic Carbonates with Isocyanides. <i>Organic Letters</i> , 2016 , 18, 5924-5927	6.2	36
335	Palladium-catalyzed coupling of alkynes with unactivated alkenes in ionic liquids: a regio- and stereoselective synthesis of functionalized 1,6-dienes and their analogues. <i>Journal of Organic Chemistry</i> , 2013 , 78, 12477-86	4.2	36
334	Efficient conversion of CO2 with olefins into cyclic carbonates via a synergistic action of I2 and base electrochemically generated in situ. <i>Electrochemistry Communications</i> , 2013 , 34, 242-245	5.1	36
333	Regioselective C-H Bond Alkynylation of Carbonyl Compounds through Ir(III) Catalysis. <i>Journal of Organic Chemistry</i> , 2017 , 82, 13003-13011	4.2	36
332	PSBQ: an efficient polymer-supported cocatalyst for the Wacker reaction in supercritical carbon dioxide. <i>Green Chemistry</i> , 2005 , 7, 582	10	36
331	1,1-Diphenylvinylsulfide as a Functional AIEgen Derived from the Aggregation-Caused-Quenching Molecule 1,1-Diphenylethene through Simple Thioetherification. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 2338-2343	16.4	36
330	Copper-Mediated [3 + 2] Oxidative Cyclization Reaction of N-Tosylhydrazones and Ketoesters: Synthesis of 2,3,5-Trisubstituted Furans. <i>Journal of Organic Chemistry</i> , 2016 , 81, 5014-20	4.2	36
329	Highly Stable Chiral Zirconium-Metallosalen Frameworks for CO Conversion and Asymmetric C-H Azidation. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 36047-36057	9.5	36
328	Enhanced Activity and Enantioselectivity of Henry Reaction by the Postsynthetic Reduction Modification for a Chiral Cu(salen)-Based Metal-Organic Framework. <i>Inorganic Chemistry</i> , 2018 , 57, 119	8 6-1 19	993 ⁶
327	Transition-Metal-Free Tandem Chlorocyclization of Amines with Carboxylic Acids: Access to Chloroimidazo[1,2-pyridines. <i>Organic Letters</i> , 2015 , 17, 3998-4001	6.2	35
326	A facile approach to synthesize 3,5-disubstituted-1,2,4-oxadiazoles via copper-catalyzed-cascade annulation of amidines and methylarenes. <i>Chemical Communications</i> , 2015 , 51, 8857-60	5.8	35
325	Synthesis of 2,3-Difunctionalized Benzofuran Derivatives through Palladium-Catalyzed Double Isocyanide Insertion Reaction. <i>Organic Letters</i> , 2018 , 20, 3500-3503	6.2	35

(2018-2014)

324	Practical access to spiroacetal enol ethers via nucleophilic dearomatization of 2-furylmethylenepalladium halides generated by Pd-catalyzed coupling of furfural tosylhydrazones with aryl halides. <i>Chemical Communications</i> , 2014 , 50, 8113-6	5.8	35	
323	Gold-catalyzed tandem Diels-Alder reactions of enynals/enynones with alkenes: generation and trapping of cyclic o-QDMs. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 4104-11	3.9	35	
322	Efficient access to 1H-indazoles via copper-catalyzed cross-coupling/cyclization of 2-bromoaryl oxime acetates and amines. <i>Organic Chemistry Frontiers</i> , 2014 , 1, 1295-1298	5.2	35	
321	Palladium-catalyzed carbonation-diketonization of terminal aromatic alkenes via carbon-nitrogen bond cleavage for the synthesis of 1,2-diketones. <i>Journal of Organic Chemistry</i> , 2011 , 76, 6958-61	4.2	35	
320	First synthesis of 1-chlorovinyl allenes via palladium-catalyzed allenylation of alkynoates with propargyl alcohols. <i>Chemistry - A European Journal</i> , 2008 , 14, 11305-9	4.8	35	
319	nBuNI-catalyzed oxidative cross-coupling of carbon dioxide, amines, and aryl ketones: access to O-#pxoalkyl carbamates. <i>Chemical Communications</i> , 2017 , 53, 2665-2668	5.8	34	
318	A copper-catalyzed oxidative coupling reaction of arylboronic acids, amines and carbon dioxide using molecular oxygen as the oxidant. <i>Green Chemistry</i> , 2017 , 19, 1642-1646	10	34	
317	Copper-Catalyzed Synthesis of Substituted Quinazolines from Benzonitriles and 2-Ethynylanilines via Carbon-Carbon Bond Cleavage Using Molecular Oxygen. <i>Journal of Organic Chemistry</i> , 2018 , 83, 54.	58 ⁴ 5 ² 466	6 ³⁴	
316	Transition-Metal-Free Diastereoselective Epoxidation of Trifluoromethylketones with N-Tosylhydrazones: Access to Tetrasubstituted Trifluoromethylated Oxiranes. <i>Organic Letters</i> , 2016 , 18, 4008-11	6.2	34	
315	Palladium-catalyzed cascade reaction of haloalkynes with unactivated alkenes for assembly of functionalized oxetanes. <i>Organic Chemistry Frontiers</i> , 2017 , 4, 373-376	5.2	33	
314	Controllable assembly of the benzothiazole framework using a C[triple bond, length as m-dash]C triple bond as a one-carbon synthon. <i>Chemical Communications</i> , 2018 , 54, 1742-1745	5.8	33	
313	Metal-Free Catalyzed Regioselective Allylic Trifluoromethanesulfonylation of Aromatic Allylic Alcohols with Sodium Trifluoromethanesulfinate. <i>Journal of Organic Chemistry</i> , 2016 , 81, 1304-9	4.2	33	
312	Divergent Syntheses of Isoquinolines and Indolo[1,2-a]quinazolines by Copper-Catalyzed Cascade Annulation from 2-Haloaryloxime Acetates with Active Methylene Compounds and Indoles. <i>Journal of Organic Chemistry</i> , 2016 , 81, 2053-61	4.2	33	
311	Fluorescence properties of halogenated mono-hydroxyl corroles: the heavy-atom effects. <i>Journal of Porphyrins and Phthalocyanines</i> , 2009 , 13, 1221-1226	1.8	33	
310	Rapid Access to 2-Methylene Tetrahydrofurans and Lactones: A Tandem Four-Step Process. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2587-91	16.4	33	
309	Rh(III)-Catalyzed Carboamination of Propargyl Cycloalkanols with Arylamines via Csp-H/Csp-Csp Activation. <i>Organic Letters</i> , 2017 , 19, 3474-3477	6.2	32	
308	Palladium-catalyzed aerobic oxidative double allylic C-H oxygenation of alkenes: a novel and straightforward route to 即unsaturated esters. <i>Chemical Communications</i> , 2015 , 51, 9575-8	5.8	32	
307	Copper-catalyzed synthesis of thiazol-2-yl ethers from oxime acetates and xanthates under redox-neutral conditions. <i>Chemical Communications</i> , 2018 , 54, 3767-3770	5.8	32	

306	Base-Promoted Coupling of Carbon Dioxide, Amines, and N-Tosylhydrazones: A Novel and Versatile Approach to Carbamates. <i>Angewandte Chemie</i> , 2015 , 127, 3127-3130	3.6	32
305	Palladium-catalyzed cross-coupling reactions of electron-deficient alkenes with N-tosylhydrazones: functional-group-controlled C-C bond construction. <i>Chemistry - A European Journal</i> , 2012 , 18, 11884-8	4.8	32
304	Aerobic Copper-Catalyzed Synthesis of Benzimidazoles from Diaryl- and Alkylamines via Tandem Triple CH Aminations. <i>ACS Catalysis</i> , 2018 , 8, 2242-2246	13.1	31
303	Lewis acidBase bifunctional aluminumBalen catalysts: synthesis of cyclic carbonates from carbon dioxide and epoxides. <i>RSC Advances</i> , 2016 , 6, 3243-3249	3.7	31
302	Synthesis of Polysubstituted 3-Amino Pyrroles via Palladium-Catalyzed Multicomponent Reaction. Journal of Organic Chemistry, 2017 , 82, 3581-3588	4.2	30
301	Access to Amino Acid Esters through Palladium-Catalyzed Oxidative Amination of Vinyl Ethers with Hydrogen Peroxide as the Oxidant and Oxygen Source. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 15926-15930	16.4	30
300	Regioselective Synthesis of 3-Trifluoromethylpyrazole by Coupling of Aldehydes, Sulfonyl Hydrazides, and 2-Bromo-3,3,3-trifluoropropene. <i>Organic Letters</i> , 2020 , 22, 809-813	6.2	30
299	Cul/SnCl2 Co-Catalyzed Four-Component Reaction of Ketones, Amines, Alkynes, and Carbon Dioxide. <i>European Journal of Organic Chemistry</i> , 2012 , 2012, 5665-5667	3.2	30
298	Visible light-promoted synthesis of organic carbamates from carbon dioxide under catalyst- and additive-free conditions. <i>Green Chemistry</i> , 2020 , 22, 4890-4895	10	29
297	Transition Metal Free Intermolecular Direct Oxidative C-N Bond Formation to Polysubstituted Pyrimidines Using Molecular Oxygen as the Sole Oxidant. <i>Journal of Organic Chemistry</i> , 2016 , 81, 5538-4	d ^{.2}	29
296	Base-Promoted Formal [4 + 3] Annulation between 2-Fluorophenylacetylenes and Ketones: A Route to Benzoxepines. <i>Journal of Organic Chemistry</i> , 2016 , 81, 912-9	4.2	29
295	Facile synthesis of dibranched conjugated dienes via palladium-catalyzed oxidative coupling of N-tosylhydrazones. <i>Chemical Communications</i> , 2013 , 49, 9218-20	5.8	29
294	One-Pot Synthesis of Spirocyclic or Fused Pyrazoles from Cyclic Ketones: Calcium Carbide as the Carbon Source in Ring Expansion. <i>Journal of Organic Chemistry</i> , 2017 , 82, 9479-9486	4.2	29
293	Copper-mediated C-H cyanation of (hetero)arenes with ethyl (ethoxymethylene)cyanoacetate as a cyanating agent. <i>Chemical Communications</i> , 2017 , 53, 7994-7997	5.8	29
292	An efficient route to highly strained cyclobutenes: indium-catalyzed reactions of enynals with alkynes. <i>Chemical Communications</i> , 2015 , 51, 5530-3	5.8	29
291	Palladium-Catalyzed Sequential Formation of C?C Bonds: Efficient Assembly of 2-Substituted and 2,3-Disubstituted Quinolines. <i>Angewandte Chemie</i> , 2012 , 124, 7404-7408	3.6	29
290	Rh(iii)-catalyzed regioselective intermolecular -methylene Csp-H bond carbenoid insertion. <i>Chemical Science</i> , 2018 , 9, 985-989	9.4	29
289	MOF-Derived Subnanometer Cobalt Catalyst for Selective CH Oxidative Sulfonylation of Tetrahydroquinoxalines with Sodium Sulfinates. <i>ACS Catalysis</i> , 2019 , 9, 2718-2724	13.1	29

(2015-2017)

288	Palladium-Catalyzed Denitrogenative Synthesis of Aryl Ketones from Arylhydrazines and Nitriles Using O as Sole Oxidant. <i>Journal of Organic Chemistry</i> , 2017 , 82, 2211-2218	4.2	28	
287	Dual Role of HO in Palladium-Catalyzed Dioxygenation of Terminal Alkenes. <i>Organic Letters</i> , 2017 , 19, 3354-3357	6.2	28	
286	Single C(sp)-F Bond Activation in a CF Group: Ipso-Defluorooxylation of (Trifluoromethyl)alkenes with Oximes. <i>Organic Letters</i> , 2019 , 21, 1130-1133	6.2	28	
285	Access to polysubstituted indoles or benzothiophenes via palladium-catalyzed cross-coupling of furfural tosylhydrazones with 2-iodoanilines or 2-iodothiophenols. <i>Chemical Communications</i> , 2015 , 51, 6126-9	5.8	28	
284	Selective Construction of 2-Substituted Benzothiazoles from o-Iodoaniline Derivatives S and N-Tosylhydrazones. <i>Journal of Organic Chemistry</i> , 2018 , 83, 2460-2466	4.2	28	
283	Synthesis of thioamides via one-pot A(3)-coupling of alkynyl bromides, amines, and sodium sulfide. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 700-7	3.9	28	
282	Copper-Catalyzed Cyanation of N-Tosylhydrazones with Thiocyanate Salt as the "CN" Source. <i>Journal of Organic Chemistry</i> , 2017 , 82, 7621-7627	4.2	28	
281	Protonolysis of the carbonpalladium bond in palladium(II)-catalyzed enyne cyclization in imidazolium-type ionic liquids. <i>Tetrahedron</i> , 2008 , 64, 2930-2937	2.4	28	
280	Synthesis of 2-Alkylaminoquinolines and 1,8-Naphthyridines by Successive Ruthenium-Catalyzed Dehydrogenative Annulation and N-Alkylation Processes. <i>Advanced Synthesis and Catalysis</i> , 2017 , 359, 1202-1207	5.6	27	
279	Amide Oxygen-Assisted Palladium-Catalyzed Hydration of Alkynes. <i>Journal of Organic Chemistry</i> , 2015 , 80, 7594-603	4.2	27	
278	Metal-catalyzed formation of 1,3-cyclohexadienes: a catalyst-dependent reaction. <i>Organic and Biomolecular Chemistry</i> , 2015 , 13, 1225-33	3.9	27	
277	An aerobic [2 + 2 + 2] cyclization via chloropalladation: from 1,6-diynes and acrylates to substituted aromatic carbocycles. <i>Journal of Organic Chemistry</i> , 2011 , 76, 4759-63	4.2	27	
276	Highly regio- and stereoselective synthesis of 1,3-enynes from unactivated ethylenes via palladium-catalyzed cross-coupling. <i>Tetrahedron Letters</i> , 2011 , 52, 5736-5739	2	27	
275	Palladium(II)-catalyzed highly regio- and stereoselective synthesis of 2-chloro-1,3-diene derivatives from alkynols and alkenes. <i>Chemistry - A European Journal</i> , 2010 , 16, 10968-70	4.8	27	
274	Efficient Synthesis of IIAlkynyl-mino Acid Derivatives by a New Copper-Catalyzed Amine-Alkyne-Alkyne Addition Reaction. <i>Advanced Synthesis and Catalysis</i> , 2008 , 350, 2226-2230	5.6	27	
273	Iridium-Catalyzed Three-component Coupling Reaction of Carbon Dioxide, Amines, and Sulfoxonium Ylides. <i>Organic Letters</i> , 2019 , 21, 1125-1129	6.2	27	
272	Ruthenium-Catalyzed Direct Synthesis of Semisaturated Bicyclic Pyrimidines via Selective Transfer Hydrogenation. <i>Organic Letters</i> , 2017 , 19, 2730-2733	6.2	26	
271	Palladium-Catalyzed Desulfitative Oxidative Coupling between Arenesulfinic Acid Salts and Allylic Alcohols: A Strategy for the Selective Construction of Aryl Ketones and Aldehydes. <i>Journal of Organic Chemistry</i> , 2015 , 80, 8903-9	4.2	26	

270	A sustainable oxidative esterification of thiols with alcohols by a cobalt nanocatalyst supported on doped carbon. <i>Green Chemistry</i> , 2018 , 20, 1992-1997	10	26
269	Highly efficient and practical synthesis of functionalized 1,5-dienes via Pd(II)-catalyzed halohomoallylation of alkynes. <i>RSC Advances</i> , 2013 , 3, 11529	3.7	26
268	Aerobic oxidative coupling between carbon nucleophiles and allylic alcohols: a strategy to construct ¶hetero)aryl ketones and aldehydes through hydrogen migration. <i>Chemistry - A European Journal</i> , 2013 , 19, 15462-6	4.8	26
267	Cu(II)-promoted transformations of Ethienylcarbinols into spirothienooxindoles: regioselective halogenation of dienyl sulfethers containing electron-rich aryl rings. <i>Journal of Organic Chemistry</i> , 2012 , 77, 6365-70	4.2	26
266	Palladium-Catalyzed Bromoalkynylation of C?C Double Bonds: Ring-Structure-Dependent Synthesis of 7-Alkynyl Norbornanes and Cyclobutenyl Halides. <i>Angewandte Chemie</i> , 2011 , 123, 6465-6469	3.6	26
265	Palladium-catalyzed aerobic oxidation of terminal olefins with electron-withdrawing groups in scCO2. <i>Tetrahedron</i> , 2008 , 64, 508-514	2.4	26
264	Zinc-Catalyzed Tandem DielsAlder Reactions of Enynals with Alkenes: Generation and Trapping of Cyclic o-Quinodimethanes (o-QDMs). <i>Advanced Synthesis and Catalysis</i> , 2016 , 358, 2684-2691	5.6	26
263	Regioselective and Stereoselective Pd-Catalyzed Intramolecular Arylation of Furans: Access to Spirooxindoles and 5H-Furo[2,3-c]quinolin-4-ones. <i>Journal of Organic Chemistry</i> , 2016 , 81, 9695-9706	4.2	26
262	Gold-catalyzed ring-expansion through acyl migration to afford furan-fused polycyclic compounds. <i>Chemical Communications</i> , 2017 , 53, 2677-2680	5.8	25
261	Direct Access to Trifluoromethyl-Substituted Carbamates from Carbon Dioxide via Copper-Catalyzed Cascade Cyclization of Enynes. <i>Organic Letters</i> , 2019 , 21, 7386-7389	6.2	25
260	Palladium-Catalyzed Intermolecular Oxidative Coupling Reactions of (Z)-Enamines with Isocyanides through Selective E(sp2)-H and/or C=C Bond Cleavage. Chinese Journal of Chemistry, 2018, 36, 712-715	4.9	25
259	Nucleopalladation-initiated oxyalkenylation of alkenes: a strategy to construct functionalized oxygenated heterocycles. <i>Journal of Organic Chemistry</i> , 2014 , 79, 7734-9	4.2	25
258	A cascade approach to fused indolizinones through Lewis acid-copper(I) relay catalysis. <i>Chemical Communications</i> , 2013 , 49, 3351-3	5.8	25
257	Expedient Synthesis of Functionalized Conjugated Enynes: Palladium-Catalyzed Bromoalkynylation of Alkynes. <i>Angewandte Chemie</i> , 2010 , 122, 3410-3413	3.6	25
256	A Three-Phase Four-Component Coupling Reaction: Selective Synthesis of o-Chloro Benzoates by KCl, Arynes, CO, and Chloroalkanes. <i>Organic Letters</i> , 2019 , 21, 345-349	6.2	25
255	Copper-Catalyzed Unstrained C-C Single Bond Cleavage of Acyclic Oxime Acetates Using Air: An Internal Oxidant-Triggered Strategy toward Nitriles and Ketones. <i>Journal of Organic Chemistry</i> , 2018 , 83, 14713-14722	4.2	25
254	Transition-metal-free synthesis of <code>trifluoromethylated</code> enamines with trifluoromethanesulfinate. <i>Chemical Communications</i> , 2017 , 53, 7473-7476	5.8	24
253	An Ir(iii)-catalyzed aryl C-H bond carbenoid functionalization cascade: access to 1,3-dihydroindol-2-ones. <i>Organic and Biomolecular Chemistry</i> , 2017 , 15, 3638-3647	3.9	24

252	Palladium-Catalyzed Cascade Cyclization/Alkynylation Reactions. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 4114-4128	4.5	24	
251	Copper-Catalyzed Oxidative Multicomponent Annulation Reaction for Direct Synthesis of Quinazolinones via an Imine-Protection Strategy. <i>Organic Letters</i> , 2019 , 21, 4725-4728	6.2	24	
250	Synthesis of polysubstituted pyrroles via Pd-catalyzed oxidative alkene C-H bond arylation and amination. <i>Journal of Organic Chemistry</i> , 2015 , 80, 1235-42	4.2	24	
249	Recent advances in metal catalyzed or mediated cyclization/functionalization of alkynes to construct isoxazoles. <i>Organic Chemistry Frontiers</i> , 2020 , 7, 2325-2348	5.2	24	
248	A four-component coupling reaction of carbon dioxide, amines, cyclic ethers and 3-triflyloxybenzynes for the synthesis of functionalized carbamates. <i>Chemical Communications</i> , 2018 , 54, 5835-5838	5.8	24	
247	Palladium-catalyzed regioselective hydroboration of aryl alkenes with Bpin. <i>Chemical Communications</i> , 2018 , 54, 1770-1773	5.8	24	
246	2,5-Oxyarylation of Furans: Synthesis of Spiroacetals via Palladium-Catalyzed Aerobic Oxidative Coupling of Boronic Acids with Hydroxyalkylfurans. <i>Organic Letters</i> , 2016 , 18, 3226-9	6.2	24	
245	Direct Assembly of 4-Substituted Quinolines with Vinyl Azides as a Dual Synthon via C?C and C-N Bond Cleavage. <i>Organic Letters</i> , 2018 , 20, 4434-4438	6.2	24	
244	Transfer hydrogenative para-selective aminoalkylation of aniline derivatives with N-heteroarenes via ruthenium/acid dual catalysis. <i>Chemical Communications</i> , 2018 , 54, 9087-9090	5.8	24	
243	Synthesis of 6-aminophenanthridines via palladium-catalyzed insertion of isocyanides into N-sulfonyl-2-aminobiaryls. <i>RSC Advances</i> , 2014 , 4, 17222-17225	3.7	24	
242	Pd(II)-catalyzed highly regio- and stereoselective assembly of C-C double bonds: an efficient method for the synthesis of 2,4-dihalo-1,3,5-trienes from alkynols. <i>Organic Letters</i> , 2013 , 15, 238-41	6.2	24	
241	Cascade One-Pot Synthesis of Indanone-Fused Cyclopentanes from the Reaction of Donor-Acceptor Cyclopropanes and Enynals via a Sequential Hydrolysis/Knoevenagel Condensation/[3+2] Cycloaddition. <i>Advanced Synthesis and Catalysis</i> , 2017 , 359, 2924-2930	5.6	24	
240	Palladium-Catalyzed Intramolecular Sulfonamidation/Oxidation of Imines: Access to Multifunctional Benzimidazoles. <i>Advanced Synthesis and Catalysis</i> , 2011 , 353, 2795-2804	5.6	24	
239	Direct access to bis-S-heterocycles via copper-catalyzed three component tandem cyclization using S as a sulfur source. <i>Organic and Biomolecular Chemistry</i> , 2019 , 17, 3424-3432	3.9	23	
238	An efficient synthesis of 2,5-diimino-furans via Pd-catalyzed cyclization of bromoacrylamides and isocyanides. <i>Chemical Communications</i> , 2014 , 50, 2037-9	5.8	23	
237	Palladium-catalyzed oxidative C-N bond coupling involving a solvent-controlled regioselective bromination process. <i>Journal of Organic Chemistry</i> , 2014 , 79, 7005-11	4.2	23	
236	Copper Chloride-Catalyzed Aerobic Oxidative Annulation of N-Furfuryl-旺naminones:Access to Polysubstituted Pyrroles and Indoles. <i>Advanced Synthesis and Catalysis</i> , 2015 , 357, 727-731	5.6	23	
235	Access to C(sp3)-C(sp2) and C(sp2)-C(sp2) bond formation via sequential intermolecular carbopalladation of multiple carbon-carbon bonds. <i>Journal of Organic Chemistry</i> , 2012 , 77, 5418-22	4.2	23	

234	Palladium-catalyzed regioselective C-H alkynylation of indoles with haloalkynes: access to functionalized 7-alkynylindoles. <i>Chemical Communications</i> , 2019 , 55, 13769-13772	5.8	23
233	Access to Polycyclic Sulfonyl Indolines via Fe(II)-Catalyzed or UV-Driven Formal [2 + 2 + 1] Cyclization Reactions of N-((1H-indol-3-yl)methyl)propiolamides with NaHSO. <i>Organic Letters</i> , 2019 , 21, 2602-2605	6.2	22
232	Iridium-Catalyzed Dehydrogenative Functionalization of (Hetero)aryl-Fused Cyclic Secondary Amines with Indoles. <i>Organic Letters</i> , 2018 , 20, 1171-1174	6.2	22
231	CuCl/EtN-Catalyzed Synthesis of Indanone-Fused 2-Methylene Pyrrolidines from Enynals and Propargylamines. <i>Organic Letters</i> , 2017 , 19, 4540-4543	6.2	22
230	Copper (I) catalyzed synthesis of 1,3-oxazolidin-2-ones from alkynes, amines, and carbon dioxide under solvent-free conditions. <i>Tetrahedron Letters</i> , 2012 , 53, 6999-7002	2	22
229	A regio- and diastereoselective palladium-catalyzed cyclopropanation of norbornene derivatives with molecular oxygen as the sole oxidant. <i>Chemical Communications</i> , 2012 , 48, 10340-2	5.8	22
228	Electrosyntheses of \(\preceq \text{Hydroxycarboxylic Acids from Carbon Dioxide and Aromatic Ketones Using Nickel as the Cathode. \(\text{Chinese Journal of Chemistry, } \) 2009 , 27, 1464-1470	4.9	22
227	A Ni(salen)-Based Metal Drganic Framework: Synthesis, Structure, and Catalytic Performance for CO2 Cycloaddition with Epoxides. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 4982-4989	2.3	21
226	Synthesis of 3-bromosubstituted pyrroles via palladium-catalyzed intermolecular oxidative cyclization of bromoalkynes with N-allylamines. <i>Chemical Communications</i> , 2015 , 51, 5894-7	5.8	21
225	Double allylic defluorinative alkylation of 1,1-bisnucleophiles with (trifluoromethyl)alkenes: construction of all-carbon quaternary centers. <i>Organic Chemistry Frontiers</i> , 2020 , 7, 1260-1265	5.2	21
224	Palladium Catalysis for Aerobic Oxidation Systems Using Robust Metal-Organic Framework. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 17148-17152	16.4	21
223	Carbonyl Ylides Derived from Palladium Carbenes: The Impressive Fluorine Effect. <i>Advanced Synthesis and Catalysis</i> , 2017 , 359, 3154-3159	5.6	21
222	CuO/CNTs-catalyzed heterogeneous process: a convenient strategy to prepare furan derivatives from electron-deficient alkynes and Enydroxy ketones. <i>Green Chemistry</i> , 2012 , 14, 2710	10	21
221	Ruthenium(II)-Catalyzed Regioselective Synthesis of Allyl Ketones from Alkynes and their Silver(I)-Catalyzed Hydroarylation into Functionalized Ketones. <i>Advanced Synthesis and Catalysis</i> , 2009 , 351, 1488-1494	5.6	21
220	Palladium-Catalyzed CN Bond Activation: The Synthesis of Amino Acid Derivatives from Triethylamine and Acrylates. <i>European Journal of Organic Chemistry</i> , 2007 , 2007, 4600-4604	3.2	21
219	Direct Access to Nitrogen Bi-heteroarenes via Iridium-Catalyzed Hydrogen-Evolution Cross-Coupling Reaction. <i>Organic Letters</i> , 2017 , 19, 3390-3393	6.2	20
218	Facile synthesis of cyanofurans via Michael-addition/cyclization of ene-yne-ketones with trimethylsilyl cyanide. <i>Chemical Communications</i> , 2017 , 53, 640-643	5.8	20
217	Palladium-Catalyzed Synthesis of 1H-Indenes and Phthalimides via Isocyanide Insertion. <i>Organic Letters</i> , 2017 , 19, 5818-5821	6.2	20

216	Hydrogen transfer-mediated selective dual CH alkylations of 2-alkylquinolines by doped TiO2-supported nanocobalt oxides. <i>Journal of Catalysis</i> , 2019 , 377, 449-454	7.3	20	
215	Visible-Light-Mediated Sulfonylimination of Tertiary Amines with Sulfonylazides Involving C-C Bond Cleavage. <i>Organic Letters</i> , 2019 , 21, 2804-2807	6.2	20	
214	Palladium-catalyzed primary amine-directed regioselective mono- and di-alkynylation of biaryl-2-amines. <i>Chemical Communications</i> , 2018 , 54, 1746-1749	5.8	20	
213	Assembly of Polysubstituted Maleimides via Palladium-Catalyzed Cyclization Reaction of Alkynes with Isocyanides. <i>Journal of Organic Chemistry</i> , 2016 , 81, 12451-12458	4.2	20	
212	Oxypalladation Initiating the Oxidlative Heck Reaction with Alkenyl lalcohols: Synthesis of Isocoumarin lalkanones. <i>European Journal of Organic Chemistry</i> , 2016 , 2016, 663-667	3.2	20	
211	Direct EC-H amination using various amino agents by selective oxidative copper catalysis: a divergent access to functional quinolines. <i>Chemical Communications</i> , 2018 , 54, 10096-10099	5.8	20	
210	TBAI or KI-Promoted Oxidative Coupling of Enamines and N-Tosylhydrazine: An Unconventional Method toward 1,5- and 1,4,5-Substituted 1,2,3-Triazoles. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 3117-3123	5.6	20	
209	Base-mediated decomposition of amide-substituted furfuryl tosylhydrazones: synthesis and cytotoxic activities of enynyl-ketoamides. <i>Journal of Organic Chemistry</i> , 2015 , 80, 2092-102	4.2	20	
208	Histidine-catalyzed synthesis of cyclic carbonates in supercritical carbon dioxide. <i>Science China Chemistry</i> , 2010 , 53, 1566-1570	7.9	20	
207	Palladium-Catalyzed Cascade Cyclization/Alkynylation and Alkenylation of Alkynone O-Methyloximes with Terminal Alkynes. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 2707-2719	5.6	20	
206	Aerobic oxidative Harylation of furans with boronic acids via Pd(ii)-catalyzed C-C bond cleavage of primary furfuryl alcohols: sustainable access to arylfurans. <i>Chemical Communications</i> , 2017 , 53, 12217-1	2 2 20	19	
205	Palladium-Catalyzed Oxidative O-H/N-H Carbonylation of Hydrazides: Access to Substituted 1,3,4-Oxadiazole-2(3H)-ones. <i>Journal of Organic Chemistry</i> , 2015 , 80, 5713-8	4.2	19	
204	A palladium-catalyzed three-component cascade S-transfer reaction in ionic liquids. <i>Green Chemistry</i> , 2019 , 21, 4084-4089	10	19	
203	Palladium-Catalyzed Allylation of Alkynes with Allyl Alcohol in Aqueous Media: Highly Regio- and Stereoselective Synthesis of 1,4-Dienes. <i>Angewandte Chemie</i> , 2006 , 118, 1979-1983	3.6	19	
202	Copper-Catalyzed [4 + 1] Annulation between Hydroxy Ketones and Nitriles: An Approach to Highly Substituted 3(2H)-Furanones. <i>Journal of Organic Chemistry</i> , 2015 , 80, 4957-65	4.2	18	
201	Catalytic Conversion of N-Heteroaromatics to Functionalized Arylamines by Merging Hydrogen Transfer and Selective Coupling. <i>ACS Catalysis</i> , 2020 , 10, 5243-5249	13.1	18	
200	Palladium-Catalyzed Regioselective Three-Component Cascade Bisthiolation of Terminal Alkynes. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 1138-1150	5.6	18	
199	Intermolecular asymmetric carboesterification of alkenes by using chiral amine auxiliaries under O2: synthesis of enantioenriched Emethylene-Elactones through chloropalladation of alkynes. Chemistry - A European Journal, 2015, 21, 6708-12	4.8	18	

198	Mg(OH)Cl/Kl as a Highly Active Heterogeneous Catalyst for the Synthesis of Cyclic Carbonates from CO2 and Epoxides under Solvent-Free Conditions. <i>Chinese Journal of Chemistry</i> , 2008 , 26, 947-951	4.9	18
197	Recent advances in aminative difunctionalization of alkenes. <i>Organic and Biomolecular Chemistry</i> , 2021 , 19, 3036-3054	3.9	18
196	Catalytic [1,3] O-to-C Rearrangement: Rapid Access to Bridged Bicyclic Systems. <i>Chemistry - A European Journal</i> , 2018 , 24, 6927-6931	4.8	17
195	Palladium-Catalyzed Regioselective Aerobic Allylic C目 Oxygenation: Direct Synthesis of 囲Jnsaturated Aldehydes and Allylic Alcohols. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 1600-1604	5.6	17
194	Iridium(III)-Catalyzed Regioselective Intermolecular Unactivated Secondary Csp3⊞ Bond Amidation. <i>Angewandte Chemie</i> , 2016 , 128, 12076-12080	3.6	17
193	MnO -Promoted Oxidative Radical Sulfonylation of Haloalkynes with Sulfonyl Hydrazides: C(sp)-S Bond Formation towards Alkynyl Sulfones. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 1875-1878	4.5	17
192	Palladium-Catalyzed Tandem Oxidative Arylation/Olefination of Aromatic Tethered Alkenes/Alkynes. <i>Chemistry - A European Journal</i> , 2017 , 23, 793-797	4.8	17
191	Synthesis of 4H-cyclopenta[c]furans via cooperative PdCl2-FeCl2 catalyzed cascade cyclization reaction involving a novel acyl rearrangement process. <i>Chemical Communications</i> , 2012 , 48, 4698-700	5.8	17
190	Recent Advances in Silver-Catalyzed Transformations of Electronically Unbiased Alkenes and Alkynes. <i>ChemCatChem</i> , 2020 , 12, 5034-5050	5.2	17
189	Carbonylation Access to Phthalimides Using Self-Sufficient Directing Group and Nucleophile. Journal of Organic Chemistry, 2018 , 83, 104-112	4.2	17
188	Selectivity-switchable construction of benzo-fused polycyclic compounds through a gold-catalyzed reaction of enyne-lactone. <i>Chemical Communications</i> , 2018 , 54, 1893-1896	5.8	16
187	Ruthenium-Catalyzed N-Alkylation for the Synthesis of 2-N-Pyridylmethyl Benzonitriles and an Exploration of Its Synthetic Utility. <i>ChemCatChem</i> , 2014 , 6, 2993-2997	5.2	16
186	Synthesis of 1,4-dienes by Pd(II)-catalyzed haloallylation of alkynes with allylic alcohols in ionic liquids. <i>Tetrahedron</i> , 2014 , 70, 1516-1523	2.4	16
185	N-Heterocyclic carbene palladium-catalyzed cascade annulation/alkynylation of 2-alkynylanilines with terminal alkynes. <i>Organic and Biomolecular Chemistry</i> , 2017 , 15, 7898-7908	3.9	16
184	Base-Mediated Three-Component Tandem Reactions for the Synthesis of Multisubstituted Pyrimidines. <i>Journal of Organic Chemistry</i> , 2017 , 82, 13609-13616	4.2	16
183	An Efficient Route to Polysubstituted Tetrahydronaphthols: Silver-Catalyzed [4+2] Cyclization of 2-Alkylbenzaldehydes and Alkenes. <i>Angewandte Chemie</i> , 2012 , 124, 11019-11023	3.6	16
182	Switch of Selectivity in the Synthesis of Methylene-Lactones: Palladium-Catalyzed Intermolecular Carboesterification of Alkenes with Alkynes. <i>Angewandte Chemie</i> , 2012 , 124, 5794-5798	3.6	16
181	Palladium-assisted multicomponent cyclization of aromatic aldehydes, arylamines and terminal olefins under molecular oxygen: an assembly of 1,4-dihydropyridines. <i>Organic and Biomolecular Chemistry</i> , 2011 , 9, 5358-61	3.9	16

180	Controllable O-Nucleometalation Cyclization Strategy: Access to Divergent Ring-Functionalized Molecules. <i>Organic Letters</i> , 2016 , 18, 6232-6235	6.2	16	
179	Intermolecular C(sp)-H Amination Promoted by Internal Oxidants: Synthesis of Trifluoroacetylated Hydrazones. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 17215-17219	16.4	16	
178	Cu-Catalyzed intermolecular [3 + 3] annulation involving oxidative activation of an unreactive C(sp3) bond: access to pyrimidine derivatives from amidines and ketones. <i>Organic Chemistry Frontiers</i> , 2017 , 4, 1107-1111	5.2	15	
177	Gold-Catalyzed Ring Expansion of Enyne-Lactone: Generation and Transformation of 2-Oxoninonium. <i>Organic Letters</i> , 2017 , 19, 5856-5859	6.2	15	
176	Deconstructive Reorganization: De Novo Synthesis of Hydroxylated Benzofuran. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4670-4677	16.4	15	
175	Tandem cyclization of o-alkynylanilines with isocyanides triggered by intramolecular nucleopalladation: access to heterocyclic fused 2-aminoquinolines. <i>Chemical Communications</i> , 2018 , 54, 6855-6858	5.8	15	
174	Haloalkyne Chemistry. Springer Briefs in Molecular Science, 2016,	0.6	15	
173	Electrochemically promoted synthesis of polysubstituted oxazoles from	3.7	15	
172	Direct Carbon (Bond Amination of Unstrained Arylalkylketones. ACS Catalysis, 2020, 10, 8402-84	08 3.1	15	
171	Direct bromocarboxylation of arynes using allyl bromides and carbon dioxide. <i>Chemical Communications</i> , 2019 , 55, 12304-12307	5.8	15	
170	Palladium-catalyzed oxidative allylation of bis[(pinacolato)boryl]methane: synthesis of homoallylic boronic esters. <i>Chemical Communications</i> , 2017 , 54, 66-69	5.8	15	
169	Assembly of 1-isoindole derivatives by selective carbon-nitrogen triple bond activation: access to aggregation-induced emission fluorophores for lipid droplet imaging. <i>Chemical Science</i> , 2019 , 10, 7076-	7 0 81	14	
168	Synthesis of Multisubstituted Benzimidazolones via Copper-Catalyzed Oxidative Tandem C-H Aminations and Alkyl Deconstructive Carbofunctionalization. <i>IScience</i> , 2019 , 15, 127-135	6.1	14	
167	Switchable Reactivity between Vinyl Azides and Terminal Alkyne by Nano Copper Catalysis. <i>Organic Letters</i> , 2019 , 21, 2090-2094	6.2	14	
166	Palladium-Catalyzed Highly Regioselective Hydrocarboxylation of Alkynes with Carbon Dioxide. <i>ACS Catalysis</i> , 2020 , 10, 7968-7978	13.1	14	
165	A novel electrochemical conversion of CO 2 with aryl hydrazines and paraformaldehyde into 1,3,4-oxadiazol-2(3 H)-one derivatives in one step. <i>Electrochemistry Communications</i> , 2016 , 72, 109-112	5.1	14	
164	Palladium/Copper Bimetallic System-Mediated Cross-Coupling of Alkynes and Alkenes: Two Strategies to Suppress & Elimination on Alkyl-Palladium Center. <i>Advanced Synthesis and Catalysis</i> , 2014 , 356, 1949-1954	5.6	14	
163	Copper(II)-Mediated Homocoupling of Thioamides for the Synthesis of 1,2,4-Thiadiazoles. <i>European Journal of Organic Chemistry</i> , 2014 , 2014, 4239-4243	3.2	14	

Palladium-Catalyzed Aerobic Oxygenation of Allylarenes. Journal of Organic Chemistry, 2017, 82, 10912-140919 14 162 Alkynyl corroles: synthesis by Sonogashira coupling reaction and the physicochemical properties. 1.8 161 14 Journal of Porphyrins and Phthalocyanines, 2010, 14, 150-157 A New Multicomponent Reaction Catalyzed by a Lewis Acid Catalyst: Convenient Synthesis of 160 3.2 14 Polyfunctional Tetrahydropyr midines. European Journal of Organic Chemistry, 2008, 2008, 3519-3523 A palladium-catalyzed oxidative aminocarbonylation reaction of alkynone O-methyloximes with 159 10 14 amines and CO in PEG-400. Green Chemistry, 2020, 22, 465-470 Asymmetric Total Synthesis of Dankasterones A and B and Periconiastone A Through Radical 158 16.4 14 Cyclization. Angewandte Chemie - International Edition, 2021, 60, 5512-5518 Two C(sp)-F Bond Activation in a CF Group: -Defluorinative Amination Triggered 1,3-Diamination of (Trifluoromethyl)alkenes with Indoles, Carbazoles, Pyrroles, and Sulfonamides. Organic Letters, 157 6.2 14 **2021**, 23, 66-70 Site-Specific Oxidative C-H Chalcogenation of (Hetero)Aryl-Fused Cyclic Amines Enabled by 156 6.2 14 Nanocobalt Oxides. Organic Letters, 2018, 20, 6554-6558 Zn(OAc)-Catalyzed C3-Carbonylacetylation of Indoles with Diazoketones Involving Wolff 155 6.2 14 Rearrangement. Organic Letters, 2018, 20, 6140-6143 Copper-Catalyzed [2 + 3] Cyclization of Hydroxyl Ketones and Arylacetonitriles: Access to 154 4.2 14 Multisubstituted Butenolides and Oxazoles. Journal of Organic Chemistry, 2018, 83, 11926-11935 Two C-O Bond Formations on a Carbenic Carbon: Palladium-Catalyzed Coupling of N-Tosylhydrazones and Benzo-1,2-quinones To Construct Benzodioxoles. Organic Letters, **2018**, 20, 3166-3169 14 153 Palladium-catalyzed CB bond activation and functionalization of 3-sulfenylindoles and related 152 5.2 13 electron-rich heteroarenes. Organic Chemistry Frontiers, 2017, 4, 1590-1594 Nucleo-Palladation-Triggering Alkene Functionalization: A Route to Lactones. Organic Letters, 151 6.2 13 **2017**, 19, 5756-5759 Palladium-catalyzed regioselective CH alkynylation of indoles with bromoalkynes in water. Organic 150 5.2 13 Chemistry Frontiers, 2019, 6, 2200-2204 Co(II)-Catalyzed Regioselective Pyridine C-H Coupling with Diazoacetates. Organic Letters, 2019, 21, 3427-343013 149 Straightforward access to novel indolo[2,3-b]indoles via aerobic copper-catalyzed [3+2] annulation 148 5.8 13 of diarylamines and indoles. Chemical Communications, 2020, 56, 2807-2810 Three component hydroxyletherification and hydroxylazidation of (trifluoromethyl)alkenes: access to Erifluoromethyl Heteroatom substituted tertiary alcohols. Chemical Communications, 2020, 5.8 147 13 56, 6241-6244 Palladium-Catalyzed Four-Component Cascade Reaction for the Synthesis of Highly Functionalized 6.2 146 13 Acyclic O,O-Acetals. Organic Letters, 2018, 20, 672-675 Silver-catalyzed regioselective coupling of carbon dioxide, amines and aryloxyallenes leading to 7.6 13 O-allyl carbamates. Journal of CO2 Utilization, 2018, 24, 120-127

1	44	Iron/zinc-catalyzed benzannulation reactions of 2-(2-oxo-alkyl)benzketones leading to naphthalene and isoquinoline derivatives. <i>Organic Chemistry Frontiers</i> , 2018 , 5, 1028-1033	5.2	13	
1	43	Ir-Catalyzed reactions in natural product synthesis. <i>Organic Chemistry Frontiers</i> , 2018 , 5, 132-150	5.2	13	
1	42	Palladium-catalyzed bond reorganization of 1,3-diynes: an entry to diverse functionalized 1,5-dien-3-ynes. <i>Journal of Organic Chemistry</i> , 2013 , 78, 4580-6	4.2	13	
1	41	Electrocarboxylation of Carbon Dioxide with Polycyclic Aromatic Hydrocarbons Using Ni as the Cathode. <i>Chinese Journal of Chemistry</i> , 2010 , 28, 1983-1988	4.9	13	
1.	40	Recent advances in the synthesis of bridgehead (or ring-junction) nitrogen heterocycles via transition metal-catalyzed CH bond activation and functionalization. <i>Organic Chemistry Frontiers</i> , 2020 , 7, 3067-3099	5.2	13	
1	39	Palladium-catalyzed ionic liquid-accelerated oxidative annulation of acetylenic oximes with unactivated long-chain enols. <i>Green Chemistry</i> , 2020 , 22, 5584-5588	10	13	
1	.38	Synthesis of 3-azabicyclo[3.1.0]hexane derivatives via palladium-catalyzed cyclopropanation of maleimides with N-tosylhydrazones: practical and facile access to CP-866,087. <i>Organic and Biomolecular Chemistry</i> , 2017 , 15, 1228-1235	3.9	12	
1	-37	Ruthenium-Catalyzed Hydrogen Evolution -Aminoalkylation of Phenols with Cyclic Amines. <i>Organic Letters</i> , 2020 , 22, 4781-4785	6.2	12	
1	.36	Copper-catalysed dehydrogenative ⊞(sp3)⊞ amination of tetrahydroquinolines with O-benzoyl hydroxylamines. <i>Organic Chemistry Frontiers</i> , 2018 , 5, 539-543	5.2	12	
1	-35	Selectivity-switchable oxidation of tetraarylethylenes to fused polycyclic compounds. <i>Chemical Communications</i> , 2016 , 52, 13345-13348	5.8	12	
1	34	MnO2-promoted carboesterification of alkenes with anhydrides: a facile approach to Elactones. <i>Chemical Communications</i> , 2016 , 52, 2628-31	5.8	12	
1	-33	Copper-Catalyzed C(sp3)日/C(sp3)日 Cross-Dehydrogenative Coupling with Internal Oxidants: Synthesis of 2-Trifluoromethyl-Substituted Dihydropyrrol-2-ols. <i>Angewandte Chemie</i> , 2017 , 129, 13509-1	13513	12	
1	.32	Palladium-Catalyzed Cascade Annulation To Construct Functionalized <code>#and flactones</code> in Ionic Liquids. <i>Angewandte Chemie</i> , 2014 , 126, 7347-7350	3.6	12	
1	.31	Chlorine-free copper-catalyzed oxidative synthesis of 1,3,4-oxadiazoles with molecular oxygen as the sole oxidant. <i>Pure and Applied Chemistry</i> , 2011 , 84, 553-559	2.1	12	
1	.30	Fluorohalogenation of gem-Difluoroalkenes: Synthesis and Applications of Arifluoromethyl Halides. <i>Chemistry - A European Journal</i> , 2020 , 26, 1953-1957	4.8	12	
1	.29	Cobalt-Catalyzed Selective Functionalization of Aniline Derivatives with Hexafluoroisopropanol. <i>Organic Letters</i> , 2019 , 21, 218-222	6.2	12	
1	.28	DDQ-mediated regioselective CB bond formation: efficient access to allylic sulfides. <i>Organic Chemistry Frontiers</i> , 2018 , 5, 3158-3162	5.2	12	
1	.27	Synthesis of 1,4-enyne-3-ones via palladium-catalyzed sequential decarboxylation and carbonylation of allyl alkynoates. <i>Organic Chemistry Frontiers</i> , 2017 , 4, 1363-1366	5.2	11	

126	Synthesis of #soxazole Carbonyl Derivatives and their Analogues via Palladium-Catalyzed Sequential C(sp2)\(\mathbb{D}\)/C(sp2)\(\mathbb{L}\)(sp3) Bond Formations. Advanced Synthesis and Catalysis, 2019, 361, 3813-3	8 2 3	11
125	Assembly of Functionalized 4-Alkynylisoxazoles by Palladium-Catalyzed Three-Component Cascade Cyclization/Alkynylation. <i>Chemistry - an Asian Journal</i> , 2019 , 14, 2309-2315	4.5	11
124	Direct Access to Exoketene Aminals via Copper-Catalyzed Formal Oxyaminalization of Alkenes under Mild Conditions. <i>Organic Letters</i> , 2019 , 21, 2223-2226	6.2	11
123	Selective reductive annulation reaction for direct synthesis of functionalized quinolines by a cobalt nanocatalyst. <i>Journal of Catalysis</i> , 2020 , 383, 239-243	7.3	11
122	Direct Alkoxycarbonylation of Heteroarenes via Cu-Mediated Trichloromethylation and In Situ Alcoholysis. <i>Organic Letters</i> , 2020 , 22, 2093-2098	6.2	11
121	Palladium-catalyzed regioselective cascade reaction of carbon dioxide, amines and allenes for the synthesis of functionalized carbamates. <i>Science China Chemistry</i> , 2020 , 63, 331-335	7.9	11
120	Iridium/Acid Cocatalyzed Direct Access to Fused Indoles via Transfer Hydrogenative Annulation of Quinolines and 1,2-Diketones. <i>Organic Letters</i> , 2020 , 22, 2308-2312	6.2	11
119	A silver-catalyzed three-component reaction via stabilized cation: synthesis of polysubstituted tetrahydronaphthols and tetrahydronaphthylamines. <i>Organic Chemistry Frontiers</i> , 2018 , 5, 1160-1164	5.2	11
118	Copper-Catalyzed Aerobic Oxidative [3+2] Annulation for the Synthesis of 5-Amino/Imino-Substituted 1,2,4-Thiadiazoles through C-N/N-S Bond Formation. <i>Journal of Organic Chemistry</i> , 2018 , 83, 9334-9343	4.2	11
117	Base-promoted annulation of Hydroxy ketones and dimethyl but-2-ynedioate: straightforward access to pyrano[4,3-a]quinolizine-1,4,6(2H)-triones and 2H-pyran-2,5(6H)-diones. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 8128-31	3.9	11
116	Palladium-catalyzed oxidative amination of homoallylic alcohols: sequentially installing carbonyl and amino groups along an alkyl chain. <i>Chemical Communications</i> , 2017 , 53, 10422-10425	5.8	11
115	A mixed-valence lanthanide metal b rganic framework, templated by 2,2?-bipyridine formed in situ reaction: synthesis, structure, and luminescent properties. <i>CrystEngComm</i> , 2012 , 14, 5285	3.3	11
114	Access to 2-Aroylthienothiazoles via C-H/N-O Bond Functionalization of Oximes. <i>Organic Letters</i> , 2019 , 21, 9976-9980	6.2	11
113	Regioselective Synthesis of 5-Trifluoromethylpyrazoles by [3 + 2] Cycloaddition of Nitrile Imines and 2-Bromo-3,3,3-trifluoropropene. <i>Journal of Organic Chemistry</i> , 2021 , 86, 2810-2819	4.2	11
112	Palladium-Catalyzed Cyclization of N-Acyl- o-alkynylanilines with Isocyanides Involving a 1,3-Acyl Migration: Rapid Access to Functionalized 2-Aminoquinolines. <i>Organic Letters</i> , 2018 , 20, 7245-7248	6.2	11
111	C[double bond, length as m-dash]N bond formation via palladium-catalyzed carbene insertion into N[double bond, length as m-dash]N bonds: inhibiting the general 1,2-migration process of ylide intermediates. <i>Chemical Communications</i> , 2017 , 53, 2697-2700	5.8	10
110	Fully meta-Substituted 4,4?-Biphenyldicarboxylate-Based Metal Drganic Frameworks: Synthesis, Structures, and Catalytic Activities. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 1478-1487	2.3	10
109	Transition-metal free selective C(MIC) bond cleavage of trifluoromethyl ketones with amidines under air: facile access to 5-trifluoromethylated Imidazol-4-ones. <i>Organic Chemistry Frontiers</i> , 2019 , 6, 858-862	5.2	10

108	Synthesis of (E)-2-Alkenylazaarenes via Dehydrogenative Coupling of (Hetero)aryl-fused 2-Alkylcyclic Amines and Aldehydes with a Cobalt Nanocatalyst. <i>ChemCatChem</i> , 2018 , 10, 2887-2892	5.2	10
107	Access to Amidines and Arylbenzimidazoles: Zinc-Promoted Rearrangement of Oxime Acetates. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 2020-2031	5.6	10
106	Transition-Metal-Free [3+2] Cycloaddition of Dehydroaminophosphonates and N-Tosylhydrazones: Access to Aminocyclopropanephosphonates with Adjacent Quaternary-Tetrasubstituted Carbon Centers. <i>Journal of Organic Chemistry</i> , 2017 , 82, 12746-12756	4.2	10
105	Copper-Catalyzed Aerobic Oxidative Transformation of Ketone-Derived N-Tosyl Hydrazones: An Entry to Alkynes. <i>Angewandte Chemie</i> , 2014 , 126, 14713-14717	3.6	10
104	Restriction of Conformation Transformation in Excited State: An Aggregation-Induced Emission Building Block Based on Stable Exocyclic C=N Group. <i>IScience</i> , 2020 , 23, 101587	6.1	10
103	Solvent-Switched Oxidation Selectivities with O: Controlled Synthesis of Difluoro(thio)methylated Alcohols and Ketones. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 12038-12045	16.4	10
102	Photocatalyzed cycloaromatization of vinylsilanes with arylsulfonylazides. <i>Nature Communications</i> , 2021 , 12, 3304	17.4	10
101	Selective Pd-catalyzed Hand Harylations of the furan rings of (ortho-bromophenyl)furan-2-yl-methanones: C(CO)II bond cleavage with a furan ring as a leaving group and synthesis of furan-derived fluorenones. <i>Organic Chemistry Frontiers</i> , 2016 , 3, 1105-1110	5.2	10
100	Base-Promoted Addition of Arylacetonitriles to Terminal Alkynes: Regio- and Stereoselective Access to Disubstituted Acrylonitriles. <i>Advanced Synthesis and Catalysis</i> , 2017 , 359, 1339-1350	5.6	9
99	Palladium-catalyzed three-component cascade arylthiolation with aryldiazonium salts as S-arylation sources. <i>Organic and Biomolecular Chemistry</i> , 2020 , 18, 4071-4078	3.9	9
98	Palladium-Catalyzed Sequential C(sp2)-H Alkynylation/Annulation of 2-Phenylphenols with Haloalkynes Using Phenolic Hydroxyl as the Traceless Directing Group. <i>Advanced Synthesis and Catalysis</i> , 2018 , 360, 2297-2302	5.6	9
97	Direct Access to Functionalized Indoles via Single Electron Oxidation Induced Coupling of Diarylamines with 1,3-Dicarbonyl Compounds. <i>Organic Letters</i> , 2019 , 21, 6736-6740	6.2	9
96	Copper-Catalyzed Benzylic CH Functionalization, Oxidation and Cyclization of Methylarenes: Direct Access to 2-Arylbenzothiazoles. <i>Chinese Journal of Chemistry</i> , 2019 , 37, 1158-1166	4.9	9
95	Metal-Free Rearrangement of Spirofurooxindoles into Spiropentenoneoxindoles and Indoles: Implications for the Mechanism and Stereochemistry of the Piancatelli Rearrangement. <i>Advanced Synthesis and Catalysis</i> , 2013 , 355, n/a-n/a	5.6	9
94	Efficient assembly of ynones via palladium-catalyzed sequential carbonylation/alkynylation. <i>Organic and Biomolecular Chemistry</i> , 2018 , 16, 7383-7392	3.9	9
93	A Four-Component Reaction Strategy for Pyrimidine Carboxamide Synthesis. <i>Angewandte Chemie</i> , 2017 , 129, 1309-1313	3.6	8
92	Copper-Catalyzed Intermolecular [4 + 2] Annulation Enabled by Internal Oxidant-Promoted C(sp)-H Functionalization: Access to 3-Trifluoromethylated 3-Hydroxy-cyclohexan-1-ones. <i>Organic Letters</i> , 2019 , 21, 4900-4904	6.2	8
91	Hydrogen Transfer-Mediated Multicomponent Reaction for Direct Synthesis of Quinazolines by a Naphthyridine-Based Iridium Catalyst. <i>IScience</i> , 2020 , 23, 101003	6.1	8

90	Silver-Catalyzed Three-Component Coupling of Carbon Dioxide, Amines and Diazoesters. <i>Chinese Journal of Chemistry</i> , 2018 , 36, 399-405	4.9	8
89	Nucleophilic trifluoromethylthiolation of bromoalkynones with AgSCF: C(sp)-SCF bond formation towards ynonyl trifluoromethyl sulfides. <i>Organic and Biomolecular Chemistry</i> , 2018 , 16, 1646-1650	3.9	8
88	Pd-Catalyzed Three-Component Reaction of Anilines, Ethyl Vinyl Ether, and Nitro-Paraffin: Assembly of Nitroamines. <i>Organic Letters</i> , 2018 , 20, 550-553	6.2	8
87	Copper-Catalyzed Cyclization of Aryl Amines and Aryldiazonium Salts under Air: Access to N-2-Aryl-Naphthotriazoles. <i>Advanced Synthesis and Catalysis</i> , 2019 , 361, 5149-5159	5.6	8
86	Direct Assembly of Polysubstituted Propiolamidinates via Palladium-Catalyzed Multicomponent Reaction of Isocyanides. <i>Organic Letters</i> , 2019 , 21, 8439-8443	6.2	8
85	Hydroxyl Group-Assisted Palladium-Catalyzed Lactonization of Homoallylic Alcohols. <i>ChemCatChem</i> , 2014 , 6, 561-566	5.2	8
84	Palladium-Catalyzed Cross-Coupling of Alkynyl Carboxylic Acids with Isocyanides: Solvent-Controlled Selective Synthesis of 5-Iminofuranones and 5-Iminopyrrolones. <i>Advanced Synthesis and Catalysis</i> , 2017 , 359, 3509-3514	5.6	8
83	Carbon nanotubes-supported palladium nanoparticles for the Suzuki reaction in supercritical carbon dioxide: A facile method for the synthesis of tetrasubstituted olefins. <i>Science in China Series B: Chemistry</i> , 2008 , 51, 241-247		8
82	Palladium-Catalyzed Enyne Cyclization of 2?-Alkenyl 2-Alkynoates in Imidazolium-Type Ionic Liquids. <i>Synthetic Communications</i> , 2007 , 37, 2121-2129	1.7	8
81	Synthesis of Isoquinoline Derivatives via Palladium-Catalyzed CH/CN Bond Activation of N-Acyl Hydrazones with Bubstituted Vinyl Azides. <i>Advanced Synthesis and Catalysis</i> , 2020 , 362, 1362-1369	5.6	8
80	Access to Cycloalkeno[]-Fused Pyridines via Pd-Catalyzed C(sp)-H Activation and Cyclization of -Acetyl Hydrazones of Acylcycloalkenes with Vinyl Azides. <i>Organic Letters</i> , 2020 , 22, 7786-7790	6.2	8
79	Three-Component Ring-Opening Reactions of Cyclic Ethers, Điazo Esters, and Weak Nucleophiles under Metal-Free Conditions. <i>Journal of Organic Chemistry</i> , 2018 , 83, 14385-14395	4.2	8
78	Hydrogen-Transfer-Mediated & Functionalization of 1,8-Naphthyridines by a Strategy Overcoming the Over-Hydrogenation Barrier. <i>Angewandte Chemie</i> , 2017 , 129, 14420-14424	3.6	7
77	Construction of polycyclic bridged indene derivatives by a tandem 1,3-rearrangement/intramolecular Friedel-Crafts cyclization of propargyl acetates. <i>Chemical</i> <i>Communications</i> , 2019 , 55, 7382-7385	5.8	7
76	Cu(I)-Catalyzed stereoselective synthesis of trisubstituted Z-enol esters via interrupting the 1,3-O-transposition reaction. <i>Organic Chemistry Frontiers</i> , 2018 , 5, 2510-2514	5.2	7
75	Bpin-Mediated Palladium-Catalyzed Diacetoxylation of Aryl Alkenes with O as Oxygen Source and Sole Oxidant. <i>Organic Letters</i> , 2018 , 20, 5090-5093	6.2	7
74	Palladium-Catalyzed Three-Component Coupling Reaction of Allyl Carboxylates, Norbornenes and Diboronates Involving Sequential Olefins Insertion and Borylation Reaction. <i>Chinese Journal of Chemistry</i> , 2019 , 37, 140-147	4.9	7
73	Access to Phenothiazine Derivatives via Iodide-Mediated Oxidative Three-Component Annulation Reaction. <i>Journal of Organic Chemistry</i> , 2020 , 85, 5629-5637	4.2	6

(2021-2020)

72	Rapid Access to Oxabicyclo[2.2.2]octane Skeleton through Cu(I)-Catalyzed Generation and Trapping of Vinyl-o-quinodimethanes (Vinyl-o-QDMs) (I) Chinese Journal of Chemistry, 2020 , 38, 1052-1056	4.9	6
71	Facile Synthesis of EConjugated Quinazoline-Substituted Ethenes from 2-Ethynylanilines and Benzonitriles under Transition-Metal-Free Conditions. <i>Journal of Organic Chemistry</i> , 2018 , 83, 10453-10	464	6
70	Selective reductive cross-coupling of N-heteroarenes by an unsymmetrical PNP-ligated manganese catalyst. <i>Journal of Catalysis</i> , 2020 , 392, 135-140	7.3	6
69	Solvent-Switched Oxidation Selectivities with O2: Controlled Synthesis of Difluoro(thio)methylated Alcohols and Ketones. <i>Angewandte Chemie</i> , 2021 , 133, 12145-12152	3.6	6
68	syn-Selective Construction of Fused Heterocycles by Catalytic Reductive Tandem Functionalization of N-Heteroarenes. <i>ACS Catalysis</i> , 2021 , 11, 9271-9278	13.1	6
67	Base-Promoted Three-Component Cascade Reaction of Hydroxy Ketones, Malonodinitrile, and Alcohols: Direct Access to Tetrasubstituted N-Pyrroles. <i>Journal of Organic Chemistry</i> , 2021 , 86, 9610-96	2 0 .2	6
66	Practical iridium-catalyzed direct Harylation of N-heteroarenes with (hetero)arylboronic acids by HO-mediated H evolution. <i>Nature Communications</i> , 2021 , 12, 4206	17.4	6
65	Synthesis of 2-isoxazolyl-2,3-dihydrobenzofurans palladium-catalyzed cascade cyclization of alkenyl ethers. <i>Chemical Communications</i> , 2021 , 57, 4799-4802	5.8	6
64	Recent advances for the synthesis of chiral sulfones with the sulfone moiety directly connected to the chiral center. <i>Organic Chemistry Frontiers</i> , 2021 , 8, 5574-5589	5.2	6
63	Silver-Promoted Coupling of Carbon Dioxide, o-Alkynylanilines and Diaryliodonium Salts: Straightforward Access to 4-Aryloxy-2-quinolinones. <i>ChemistrySelect</i> , 2017 , 2, 4691-4695	1.8	5
62	Access to Amino Acid Esters through Palladium-Catalyzed Oxidative Amination of Vinyl Ethers with Hydrogen Peroxide as the Oxidant and Oxygen Source. <i>Angewandte Chemie</i> , 2017 , 129, 16142-167	146 ⁶	5
61	Photocatalyzed formal carbooxygenation of terminal alkynes. Organic Chemistry Frontiers, 2020, 7, 160	051£05	5 5
60	Palladium-Catalyzed Intermolecular Oxidative Cyclization of Allyltosylamides with AcOH: Assembly of 3-Pyrrolin-2-ones. <i>Journal of Organic Chemistry</i> , 2017 , 82, 8191-8198	4.2	5
59	Sodium Borohydride-Nickel Chloride-Methanol Catalytic System for Regioselective Reduction of Electron-Rich Conjugated Dienes and Reductive Cleavage of Allyl Esters Involving EAllylnickel Intermediates. <i>Advanced Synthesis and Catalysis</i> , 2011 , 353, 3319-3324	5.6	5
58	Steric-switched defluorofunctionalization selectivity: controlled synthesis of monofluoroalkene-masked medium-sized heterocyclic lactams and lactones. <i>Science China Chemistry</i> , 2022 , 65, 554-562	7.9	5
57	Copper-catalysed oxidative ⊞(sp3)⊞ nitroalkylation of (hetero)arene-fused cyclic amines. Organic Chemistry Frontiers, 2020 , 7, 425-429	5.2	5
56	Pd-Catalyzed Heterocycle Synthesis in Ionic Liquids. <i>Catalytic Science Series</i> , 2016 , 351-368	0.4	5
55	Reductive electrophilic C-H alkylation of quinolines by a reusable iridium nanocatalyst. <i>Chemical Science</i> , 2021 , 12, 13802-13808	9.4	5

54	Tandem Achmatowicz Rearrangement and Acetalization of 1-[5-(Hydroxyalkyl)-furan-2-yl]-cyclobutanols Leading to Dispiroacetals and Subsequent Ring-Expansion to Form 6,7-Dihydrobenzofuran-4(5 H)-ones. <i>Journal of Organic Chemistry</i> , 2018 , 83, 128	4.2 69-12	5 879
53	Metal-bipyridine/phenanthroline-functionalized porous crystalline materials: Synthesis and catalysis. <i>Coordination Chemistry Reviews</i> , 2021 , 438, 213907	23.2	5
52	Palladium-Catalyzed Nitrile-Assisted C(sp)-Cl Bond Formation for Synthesis of Dichlorides. <i>Organic Letters</i> , 2019 , 21, 8308-8311	6.2	4
51	Transition-metal-catalyst-free synthesis of anthranilic acid derivatives by transfer hydrogenative coupling of 2-nitroaryl methanols with alcohols/amines. <i>Organic and Biomolecular Chemistry</i> , 2018 , 16, 531-535	3.9	4
50	Palladium-Catalyzed Regio- and Stereoselective Sulfonylation of Aryl Propiolates with Sulfonyl Hydrazides: Access to (E)-Paryl Sulfonyl Acrylates. <i>Advanced Synthesis and Catalysis</i> , 2019 , 361, 4575-458	ē .6	4
49	Selective synthesis of nitrogen bi-heteroarenes by a hydrogen transfer-mediated direct 毗oupling reaction. <i>Organic and Biomolecular Chemistry</i> , 2017 , 15, 6093-6097	3.9	4
48	Palladium-catalyzed oxidation of dihydromyrcene to citronellal in supercritical carbon dioxide. <i>Chinese Journal of Chemistry</i> , 2010 , 22, 1384-1386	4.9	4
47	Facile Synthesis of Trisubstituted Allenynes by Phosphane-Mediated Deoxygenation of 2,4-Pentadiyn-1-ol. <i>European Journal of Organic Chemistry</i> , 2010 , 2010, n/a-n/a	3.2	4
46	B(C6F5)3-Catalyzed Hydroarylation of Terminal Alkynes with Phenols. <i>Advanced Synthesis and Catalysis</i> , 2021 , 363, 3962-3967	5.6	4
45	Palladium-catalyzed cascade carboesterification of norbornene with alkynes. <i>Organic and Biomolecular Chemistry</i> , 2018 , 16, 8495-8504	3.9	4
44	Conversion of Triple Bonds into Single Bonds in a Domino Carbopalladation with Norbornene. <i>Chemistry - an Asian Journal</i> , 2017 , 12, 2991-2995	4.5	3
43	Transition-metal-free N-difluoromethylation of hydrazones with TMSCF2Br as the difluoromethylation reagent. <i>Organic Chemistry Frontiers</i> , 2019 , 6, 2462-2466	5.2	3
42	Synthesis of Diverse Functionalized Quinoxalines by Oxidative Tandem Dual C-H Amination of Tetrahydroquinoxalines with Amines. <i>Chemistry - A European Journal</i> , 2019 , 25, 15858-15862	4.8	3
41	Photocatalyzed Coupling-Cyclization of -Alkynylaryl Vinylethers with Arylsulfonyl Azides. <i>Journal of Organic Chemistry</i> , 2021 , 86, 14572-14585	4.2	3
40	Selective Synthesis of Non-Aromatic Five-Membered Sulfur Heterocycles from Alkynes by using a Proton Acid/N-Chlorophthalimide System. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 1313-13	16 .4	3
39	Palladium-catalyzed aerobic oxyarylthiolation of alkynone -methyloximes with arylhydrazines and elemental sulfur. <i>Organic and Biomolecular Chemistry</i> , 2021 , 19, 3396-3403	3.9	3
38	Stereodivergent synthesis of ∰odoenol carbamates with CO photocatalysis. <i>Chemical Science</i> , 2021 , 12, 11821-11830	9.4	3
37	Rh(III)-Catalyzed sulfonylamination of <code>Hndolyl</code> alcohols via Csp2tsp3 bond cleavage. <i>Organic Chemistry Frontiers</i> , 2021 , 8, 983-987	5.2	3

36	Recent advances in NHCpalladium catalysis for alkyne chemistry: versatile synthesis and applications. <i>Organic Chemistry Frontiers</i> , 2021 , 8, 3502-3524	5.2	3	
35	Recent Advances in Chemical Modifications of Nitriles. <i>European Journal of Organic Chemistry</i> , 2021 , 2021, 6658-6669	3.2	3	
34	Intermolecular diastereoselective annulation of azaarenes into fused N-heterocycles by Ru(II) reductive catalysis <i>Nature Communications</i> , 2022 , 13, 2393	17.4	3	
33	Macrocyclization of 3-triflyloxybenzynes with tetrahydrofuran via an anionic thia-Fries rearrangement. <i>Chemical Communications</i> , 2020 , 56, 6495-6498	5.8	2	
32	Palladium Catalysis for Aerobic Oxidation Systems Using Robust Metal@rganic Framework. <i>Angewandte Chemie</i> , 2019 , 131, 17308-17312	3.6	2	
31	Bond energy enabled amine distinguishing strategy: chemo-, regioselective 1,3-diamination of (trifluoromethyl)alkenes with different amines by two C(sp3) E bond cleavages. <i>Organic Chemistry Frontiers</i> ,	5.2	2	
30	[3+1+1] Annulation Reaction of Benzo-1,2-Quinones, Aldehydes and Hydroxylamine Hydrochloride: Access to Benzoxazoles with Inorganic Nitrogen Source. <i>Advanced Synthesis and Catalysis</i> , 2021 , 363, 2124-2132	5.6	2	
29	Selective construction of fused heterocycles by an iridium-catalyzed reductive three-component annulation reaction. <i>Chemical Communications</i> , 2021 , 57, 8292-8295	5.8	2	
28	Copper-catalyzed four-component reaction of alkenes, Togni@reagent, amines and CO2: stereoselective synthesis of (Z)-enol carbamates. <i>Organic Chemistry Frontiers</i> , 2021 , 8, 1851-1857	5.2	2	
27	Rh(III)-Catalyzed Csp2ftsp3 Bond Cleavage/Carbonylethylation of <code>Hndolyl</code> Alcohols. <i>Advanced Synthesis and Catalysis</i> , 2021 , 363, 1672-1684	5.6	2	
26	Intermolecular C(sp3)⊞ Amination Promoted by Internal Oxidants: Synthesis of Trifluoroacetylated Hydrazones. <i>Angewandte Chemie</i> , 2018 , 130, 17461-17465	3.6	2	
25	Visible-Light-Catalyzed in Situ Denitrogenative Sulfonylation of Sulfonylhydrazones. <i>Organic Letters</i> , 2021 , 23, 6784-6788	6.2	2	
24	Palladium-Catalyzed Sequential Cyclization/Functionalization of Oxime Ethers with Unactivated Vinyl Ethers for Tunable Assembly of Structurally Diverse Isoxazoles. <i>Chinese Journal of Chemistry</i> ,	4.9	2	
23	Visible light-driven efficient palladium catalyst turnover in oxidative transformations within confined frameworks <i>Nature Communications</i> , 2022 , 13, 928	17.4	2	
22	Green Oxidative Synthesis of Ethers, Esters, and Organic Halides 2019 , 79-121		1	
21	CO2 Chemistry in SCUT Group: New Methods for Conversion of Carbon Dioxide into Organic Compounds. <i>ACS Symposium Series</i> , 2015 , 71-108	0.4	1	
20	Frontispiece: Deconstructive Reorganization: De Novo Synthesis of Hydroxylated Benzofuran. <i>Angewandte Chemie - International Edition</i> , 2020 , 59,	16.4	1	
19	Construction of Fluorinated Amino Acid Derivatives via Cobalt-Catalyzed Oxidative Difunctionalization of Cyclic Ethers <i>Organic Letters</i> , 2022 ,	6.2	1	

18	Divergent Synthesis of Skeletally Distinct Arboridinine and Arborisidine. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	1
17	Synthesis of functionalized benzimidazoles oxidative tandem quartic C-H aminations and cleavage of C-N and C-C bonds. <i>Chemical Communications</i> , 2021 , 57, 12976-12979	5.8	1
16	Selective construction of fused heterocycles by mild oxidative C-H functionalization using non-metallic catalysis. <i>Cell Reports Physical Science</i> , 2021 , 2, 100383	6.1	1
15	Rh(III)-Catalyzed Csp-Csp Bond Enolation of Andolyl Alcohols. <i>Organic Letters</i> , 2021 , 23, 3965-3969	6.2	1
14	Ruthenium/acid co-catalyzed reductive hosphinoylation of 1,8-naphthyridines with diarylphosphine oxides. <i>Organic Chemistry Frontiers</i> , 2021 , 8, 106-111	5.2	1
13	Selective Synthesis of Non-Aromatic Five-Membered Sulfur Heterocycles from Alkynes by using a Proton Acid/N-Chlorophthalimide System. <i>Angewandte Chemie</i> , 2021 , 133, 1333-1342	3.6	1
12	Rh(III)-Catalyzed Csp2ftsp3 bond alkoxylation of Andolyl alcohols via Cft fbond cleavage. Organic Chemistry Frontiers, 2021 , 8, 2949-2954	5.2	1
11	Bimetal Cooperatively Catalyzed Arylalkynylation of Alkynylsilanes. <i>Organic Letters</i> , 2021 , 23, 6724-6728	86.2	1
10	哥rifluoromethyl Carbanion-catalyzed Intermolecular Stetter Reaction of Aromatic Aldehydes with 2-Bromo-3,3,3-trifluoropropene: Synthesis of 和lkoxyl-trifluoromethylated Ketones <i>Organic Letters</i> , 2021 ,	6.2	1
9	Recent advances in fixation of CO2 into organic carbamates through multicomponent reaction strategies. <i>Chinese Journal of Catalysis</i> , 2022 , 43, 1598-1617	11.3	1
8	Deconstructive Reorganization: De Novo Synthesis of Hydroxylated Benzofuran. <i>Angewandte Chemie</i> , 2020 , 132, 4700-4707	3.6	О
7	NHC-Palladium-catalyzed ionic liquids-accelerated regioselective oxyarylation of alkynes with diaryl ethers. <i>Green Chemistry</i> ,	10	Ο
6	One-Pot Palladium-Catalyzed Carbonylative Sonogashira Coupling using Carbon Dioxide as Carbonyl Source. <i>ChemCatChem</i> , 2021 , 13, 2843-2851	5.2	0
5	Pd-Catalyzed Sequential Formation of C-C Bonds: A New Strategy for the Synthesis of ()-即Jnsaturated Carbonyl Compounds from Sulfoxonium Ylides and 1-Iodo-2-((2-methylallyl)oxy)benzene Compounds. <i>Journal of Organic Chemistry</i> , 2021 , 86, 11545-11556	4.2	O
4	Recent Advances in Transformations Involving Electron-Rich Alkenes: Functionalization, Cyclization, and Cross-Metathesis Reactions. <i>Advanced Synthesis and Catalysis</i> ,	5.6	0
3	A stereo-controlled route to conjugated E-enediynes. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2007, 2, 283-286		
2	PdCl2-catalyzed heterocyclotrimerization in MeOH/scCO2: A versatile approach to dimethyl pyridine-3,5-dicarboxylate from methyl acrylate and urea. <i>Science in China Series B: Chemistry</i> , 2008 , 51, 447-451		
1	C-H Amination enabled [2+1+1+1] Annulation Reaction in Water: Access to Benzoxazoles. <i>European Journal of Organic Chemistry</i> ,	3.2	