## Antonio Isalgue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4480728/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Monitoring and Calculation Study in Mediterranean Residential Spaces: Thermal Performance<br>Comparison for the Winter Season. Buildings, 2022, 12, 325.                                              | 3.1  | 4         |
| 2  | Techno-economic optimization model for polygeneration hybrid energy storage systems using biogas and batteries. Energy, 2021, 218, 119544.                                                            | 8.8  | 31        |
| 3  | Data set of climatic factors measured in a low latitude region with warm and humid climate: Solar radiation, cloud cover and sky temperature. Data in Brief, 2021, 38, 107404.                        | 1.0  | 1         |
| 4  | The Energy Consumption of Terraces in the Barcelona Public Space: Heating the Street. Sustainability, 2021, 13, 865.                                                                                  | 3.2  | 4         |
| 5  | Heat Flux Balance in Mediterranean Climates: Thermal Insulation Location in Building Enclosures.<br>Smart Innovation, Systems and Technologies, 2021, , 491-501.                                      | 0.6  | 0         |
| 6  | The Role of Vegetation in Urban Comfort: Surface Temperature Assessment at Street Level. Smart<br>Innovation, Systems and Technologies, 2021, , 539-548.                                              | 0.6  | 0         |
| 7  | Evaluation of Three Lighting Software in the Use of Different Light Intensity Spaces. Smart Innovation,<br>Systems and Technologies, 2021, , 419-429.                                                 | 0.6  | 0         |
| 8  | Exergetic model of a small-scale, biomass-based CCHP/HP system for historic building structures.<br>Energy Conversion and Management: X, 2021, 12, 100148.                                            | 1.6  | 1         |
| 9  | Renewable Land: Planning the Evolution of Logistic Areas. Architecture, City and Environment, 2021, 16, .                                                                                             | 0.1  | 0         |
| 10 | A techno-economic optimization model of a biomass-based CCHP/heat pump system under evolving climate conditions. Energy Conversion and Management, 2020, 223, 113256.                                 | 9.2  | 39        |
| 11 | How Much Does It Cost to Go Off-Grid with Renewables? A Case Study of a Polygeneration System for a Neighbourhood in Hermosillo, Mexico. Smart Innovation, Systems and Technologies, 2020, , 395-405. | 0.6  | 1         |
| 12 | Buildingmass and Energy Demand in Conventional Housing Typologies of the Mediterranean City.<br>Sustainability, 2019, 11, 3540.                                                                       | 3.2  | 2         |
| 13 | 3E-Analysis of a Bio-Solar CCHP System for the Andaman Islands, India—A Case Study. Energies, 2019, 12,<br>1113.                                                                                      | 3.1  | 14        |
| 14 | Assessment of the reflectivity and emissivity impact on light metal roofs thermal behaviour, in warm and humid climate. Energy and Buildings, 2019, 188-189, 200-208.                                 | 6.7  | 11        |
| 15 | Biomass-fired combined cooling, heating and power for small scale applications – A review. Renewable<br>and Sustainable Energy Reviews, 2018, 96, 392-410.                                            | 16.4 | 58        |
| 16 | An Approach to Daylight Contrast Assessment in Mediterranean Urban Environments. , 2017, , 77-87.                                                                                                     |      | 1         |
| 17 | Ordering kinetics evaluation of FeAl powders. Intermetallics, 2017, 91, 78-85.                                                                                                                        | 3.9  | 7         |
| 18 | Daylight Management in Mediterranean Cities: When Shortage Is Not the Issue. Energies, 2016, 9, 753.                                                                                                  | 3.1  | 8         |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Side-View Atmospheres under Outdoor Midday High Luminance. Buildings, 2016, 6, 53.                                                                                                                      | 3.1 | 5         |
| 20 | Solar Energy as a Form Giver for Future Cities. Energies, 2016, 9, 544.                                                                                                                                 | 3.1 | 15        |
| 21 | A digital image processing method for urban scenes brightness assessment. Architecture, City and Environment, 2016, 11, 157-170.                                                                        | 0.1 | 2         |
| 22 | Functional fatigue recovery of superelastic cycled NiTi wires based on near 100 °C aging treatments.<br>MATEC Web of Conferences, 2015, 33, 03019.                                                      | 0.2 | 1         |
| 23 | Effect of Thermal Cycling on CuAlAg Shape Memory Alloys. Materials Today: Proceedings, 2015, 2,<br>S805-S808.                                                                                           | 1.8 | 2         |
| 24 | Effects of Strain Aging in NiTi SMA Wire for Dampers. Materials Today: Proceedings, 2015, 2, S983-S986.                                                                                                 | 1.8 | 4         |
| 25 | Microstructural effects of strain aging on NiTi pseudoelastic wires by synchrotron X-ray micro-diffraction. MATEC Web of Conferences, 2015, 33, 03020.                                                  | 0.2 | Ο         |
| 26 | Behavior of NiTi Wires for Dampers and Actuators in Extreme Conditions. Journal of Materials<br>Engineering and Performance, 2015, 24, 3323-3327.                                                       | 2.5 | 12        |
| 27 | Shape memory alloys as an effective tool to damp oscillations. Journal of Thermal Analysis and Calorimetry, 2015, 119, 1475-1533.                                                                       | 3.6 | 47        |
| 28 | Yellow is green: An opportunity for energy savings through colour in architectural spaces. Energy and Buildings, 2014, 78, 105-112.                                                                     | 6.7 | 7         |
| 29 | Metastable effects on martensitic transformation in SMA. Journal of Thermal Analysis and Calorimetry, 2013, 112, 777-780.                                                                               | 3.6 | 9         |
| 30 | Mechanical and nanoindentation behavior of TiC–NiTi thermal spray coatings. Journal of Alloys and<br>Compounds, 2013, 577, S277-S281.                                                                   | 5.5 | 10        |
| 31 | Built in dampers for stayed cables in bridges via SMA. The SMARTeR-ESF project: A mesoscopic and macroscopic experimental analysis with numerical simulations. Engineering Structures, 2013, 49, 43-57. | 5.3 | 59        |
| 32 | Thermomechanical Fatigue Behavior of NiTi Wires. Materials Science Forum, 2013, 738-739, 311-315.                                                                                                       | 0.3 | 0         |
| 33 | NiTi Splat Features during Vacuum Thermal Spraying onto Several Substrates. Materials Science<br>Forum, 2013, 738-739, 357-361.                                                                         | 0.3 | 0         |
| 34 | Damping in civil engineering using SMA Part 2 – particular properties of NiTi for damping of stayed cables in bridges. Canadian Metallurgical Quarterly, 2013, 52, 81-89.                               | 1.2 | 18        |
| 35 | SMA Dampers for Cable Vibration: An Available Solution for Oscillation Mitigation of Stayed Cables in Bridges. Advances in Science and Technology, 2012, 78, 92-102.                                    | 0.2 | 7         |
| 36 | SMA (Cu-BASED, NITI) FOR USE IN DAMPING: THE IMPLICATIONS OF RELIABILITY FOR LONG TIME APPLICATIONS AND AGING BEHAVIOR. Functional Materials Letters, 2012, 05, 1250008.                                | 1.2 | 10        |

| #  | Article                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | SMA (NiTi): The Coupling between Time, Temperature and Cycling Frequency. Materials Science Forum, 2012, 730-732, 853-858.                                                                                                                                                         | 0.3 | Ο         |
| 38 | Fatigue of NiTi for Dampers and Actuators. Advances in Science and Technology, 2012, 83, 18-27.                                                                                                                                                                                    | 0.2 | 5         |
| 39 | SMA in Mitigation of Extreme Loads in Civil Engineering: Study of their Application in a Realistic Steel Portico. Applied Mechanics and Materials, 2011, 82, 278-283.                                                                                                              | 0.2 | 7         |
| 40 | Fatigue laboratory tests toward the design of SMA portico-braces. Smart Structures and Systems, 2011, 7, 41-57.                                                                                                                                                                    | 1.9 | 44        |
| 41 | Damping in Civil Engineering Using SMA. Part I: Particular Properties of CuAlBe for Damping of Family<br>Houses. Canadian Metallurgical Quarterly, 2010, 49, 179-190.                                                                                                              | 1.2 | 11        |
| 42 | Metastable effects on martensitic transformation in SMA. Journal of Thermal Analysis and Calorimetry, 2010, 102, 671-680.                                                                                                                                                          | 3.6 | 15        |
| 43 | display="inline" overnow="scroll" xmins:xocs="http://www.elsevier.com/xml/xocs/dtd<br>xmlns:xs="http://www.w3.org/2001/XMLSchema"<br>xmlns:xsi="http://www.elsevier.com/xml/ja/dtd"<br>xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mm="http://www.w3.org/1998/Math/MathML" | 1.2 | 3         |
| 44 | Wear and corrosion of metal-matrix (stainless steel or NiTi)-TiC coatings. Physics Procedia, 2010, 10, 77-80.                                                                                                                                                                      | 1.2 | 9         |
| 45 | Structure characterization and wear performance of NiTi thermal sprayed coatings. Smart Materials and Structures, 2010, 19, 085011.                                                                                                                                                | 3.5 | 17        |
| 46 | Pseudoelastic fatigue of NiTi wires: frequency and size effects on damping capacity. Smart Materials and Structures, 2010, 19, 085006.                                                                                                                                             | 3.5 | 86        |
| 47 | Damping in Civil Engineering Using SMA. The Fatigue Behavior and Stability of CuAlBe and NiTi Alloys.<br>Journal of Materials Engineering and Performance, 2009, 18, 738-745.                                                                                                      | 2.5 | 24        |
| 48 | Low temperature aging behaviour of transformation temperatures in some Cu-based and NiTi SMA. , 2009, , .                                                                                                                                                                          |     | 3         |
| 49 | NiTi thermal sprayed coatings characterization. , 2009, , .                                                                                                                                                                                                                        |     | 2         |
| 50 | Wear of NiTi coatings obtained by thermal spraying. , 2009, , .                                                                                                                                                                                                                    |     | 3         |
| 51 | The SMA properties in civil engineering applications. The SMARTeR project: Use of SMA in damping of stayed cables for bridges. , 2009, , .                                                                                                                                         |     | 2         |
| 52 | Choice of SMAs for damping applications in Civil Engineering: simulations and realistic experiments. , 2009, , .                                                                                                                                                                   |     | 0         |
| 53 | Metastable effects on martensitic transformation in SMA part V. fatigue-life and detailed hysteresis<br>behavior in NiTi and Cu-based alloys. Journal of Thermal Analysis and Calorimetry, 2008, 91, 575-579.                                                                      | 3.6 | 19        |
| 54 | Metastable effects on martensitic transformation in SMA. Journal of Thermal Analysis and Calorimetry, 2008, 91, 991-998.                                                                                                                                                           | 3.6 | 48        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Metastable effects on martensitic transformation in SMA part VII. Aging problems in NiTi. Journal of<br>Thermal Analysis and Calorimetry, 2008, 92, 63-71.                                                                         | 3.6 | 9         |
| 56 | Scaling laws and the modern city. Physica A: Statistical Mechanics and Its Applications, 2007, 382, 643-649.                                                                                                                       | 2.6 | 31        |
| 57 | Metastable effects on martensitic transformation in SMA. Journal of Thermal Analysis and Calorimetry, 2007, 89, 101-107.                                                                                                           | 3.6 | 26        |
| 58 | Metastable effects on martensitic transformation in SMA. Journal of Thermal Analysis and Calorimetry, 2007, 89, 537-542.                                                                                                           | 3.6 | 20        |
| 59 | Metastable effects onmartensitic transformation in SMA. Journal of Thermal Analysis and Calorimetry, 2007, 88, 537-548.                                                                                                            | 3.6 | 26        |
| 60 | Built in dampers for family homes via SMA: An ANSYS computation scheme based on mesoscopic and microscopic experimental analyses. Engineering Structures, 2007, 29, 1889-1902.                                                     | 5.3 | 59        |
| 61 | SMA for Dampers in Civil Engineering. Materials Transactions, 2006, 47, 682-690.                                                                                                                                                   | 1.2 | 25        |
| 62 | Conditioning treatments of Cu–Al–Be shape memory alloys for dampers. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 438-440,<br>1085-1088.                           | 5.6 | 16        |
| 63 | Metastable effects on martensitic transformation in SMA (I) recoverable effects by the action of thermodynamic forces in parent phase. Journal of Thermal Analysis and Calorimetry, 2005, 81, 131-135.                             | 3.6 | 17        |
| 64 | Shape memory alloys: From the physical properties of metastable phase transitions to dampers for civil engineering applications. European Physical Journal Special Topics, 2004, 113, 85-90.                                       | 0.2 | 14        |
| 65 | Micro and macroscopic effects on the long time guaranteed behaviour of Cu-based shape memory<br>alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2004, 378, 227-231. | 5.6 | 5         |
| 66 | Physical constraints in SMA applications. One study case: dampers in civil engineering. , 2004, , .                                                                                                                                |     | 3         |
| 67 | Mesoscale observations and yearly effects in Cu-Zn-Al shape memory alloys: Representative model and predictable damping effects. European Physical Journal Special Topics, 2003, 112, 1155-1158.                                   | 0.2 | 1         |
| 68 | Fundamental aspects on the thermoelasticity and pseudoelasticity in single interface transformations. European Physical Journal Special Topics, 2003, 112, 479-482.                                                                | 0.2 | 1         |
| 69 | <title>Damping via Cu-Zn-Al shape memory alloys (SMA): the action of diffusive effects on the macroscopic description</title> . , 2002, 4696, 186.                                                                                 |     | 2         |
| 70 | Diffusion Effects on Transformation and Deformation Behavior in Copper-Based Shape Memory Alloys.<br>Materials Transactions, 2002, 43, 926-932.                                                                                    | 1.2 | 4         |
| 71 | Guaranteed behaviour of shape memory alloys : After quench and long time effects in CuZnAl SMA.<br>European Physical Journal Special Topics, 2001, 11, Pr8-141-Pr8-146.                                                            | 0.2 | 2         |
| 72 | <title>Damping in single crystals of Cu-Zn-Al SMA: predictable effects related to external amplitudes and temperature</title> . , 2001, , .                                                                                        |     | 0         |

| #  | Article                                                                                                                                                                                                     | IF          | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------|
| 73 | <title>Model and constitutive equation describing the hysteretic behavior of single crystals in<br/>Cu-Zn-Al SMA: from single plate to a collective behavior</title> . , 2001, 4326, 440.                   |             | 0         |
| 74 | Title is missing!. Magyar Apróvad Közlemények, 2001, 66, 7-16.                                                                                                                                              | 1.4         | 10        |
| 75 | <title>Guaranteed behavior on SMA: mesoscopic and microscopic analysis of Cu-based alloys</title> . ,<br>2000, 3988, 244.                                                                                   |             | 1         |
| 76 | Microstructure and Thermodynamics of the Martensitic Transformation. Canadian Metallurgical<br>Quarterly, 2000, 39, 207-214.                                                                                | 1.2         | 10        |
| 77 | Microstructure and Thermodynamics of the Martensitic Transformation. Canadian Metallurgical Quarterly, 2000, 39, 207-214.                                                                                   | 1.2         | 2         |
| 78 | Low temperature crystallised Ti-rich NiTi shape memory alloy films for microactuators. Sensors and Actuators A: Physical, 1999, 74, 65-69.                                                                  | 4.1         | 54        |
| 79 | Shape memory NiTi thin films deposited at low temperature. Materials Science & Engineering A:<br>Structural Materials: Properties, Microstructure and Processing, 1999, 273-275, 717-721.                   | 5.6         | 14        |
| 80 | Title is missing!. , 1998, 52, 773-780.                                                                                                                                                                     |             | 6         |
| 81 | Title is missing!. Magyar Apróvad Közlemények, 1998, 53, 671-683.                                                                                                                                           | 1.4         | 5         |
| 82 | The Mediterranean blind: Less light, better vision. Renewable Energy, 1998, 15, 431-436.                                                                                                                    | 8.9         | 2         |
| 83 | Experimental approach to the diffusion effects near room temperature in copperÂ-ÂzincÂ-Âaluminium shape<br>memory alloys. High Temperatures - High Pressures, 1998, 30, 515-521.                            | 0.3         | 0         |
| 84 | Ms-Evolution in Cu-Zn-Al SMA. Predictable Temperature and Time Actions on Parent Phase. European<br>Physical Journal Special Topics, 1997, 07, C5-339-C5-344.                                               | 0.2         | 2         |
| 85 | Matériaux intelligents : modélisation prédictive de l'évolution temporelle d'alliages à mémoire<br>forme du type Cu-Zn-Al. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1997, 94, 1069-1080. | e de<br>0.2 | 0         |
| 86 | Predictable behavior of smart materials (Cu-Zn-Al SMA). Journal of Thermal Analysis, 1996, 47, 151-163.                                                                                                     | 0.6         | 2         |
| 87 | Time Evolution in Static β-Phase and Dynamic β-Martensite Coexistence (Cu-Zn-Al SMA). European Physical<br>Journal Special Topics, 1995, 05, C8-853-C8-858.                                                 | 0.2         | 2         |
| 88 | Anisotropic Behaviour in Cu-Zn-Al SMA Due to the Oriented Growth of Î <sup>3</sup> Precipitates. European<br>Physical Journal Special Topics, 1995, 05, C2-153-C2-158.                                      | 0.2         | 0         |
| 89 | Experimental Studies, Modelling and Simulation of the Hysteresis in SMA Single Crystals : The Ϊƒ, ε, T and t<br>Coordinate Space. European Physical Journal Special Topics, 1995, 05, C2-471-C2-476.        | 0.2         | 0         |
| 90 | From adapted and computerized thermomechanical equipments to modelling and the time-evolution behaviour in Cuâ^'Znâ^'Al shape memory alloys. Journal of Thermal Analysis, 1994, 41, 1425-1432.              | 0.6         | 1         |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Interaction of single variant martensitic transformation with small γ type precipitates in Cuî—,Znî—,Al. Acta<br>Metallurgica Et Materialia, 1994, 42, 453-460.                                        | 1.8 | 36        |
| 92  | Cu-Zn-Al SMA: Time dependent processes in the $\hat{I}^2$ - m coexistence. , 1994, , 923-926.                                                                                                          |     | 0         |
| 93  | $\hat{I}^3$ precipitates in Cu based SMA: Interface effects and training processes. , 1994, , 915-918.                                                                                                 |     | 0         |
| 94  | Modelling and simulation in SMA. , 1994, , 943-946.                                                                                                                                                    |     | 0         |
| 95  | Oriented growth of gamma precipitates and TWSME in Cu-Zn-Al. Scripta Metallurgica Et Materialia, 1993, 28, 1183-1188.                                                                                  | 1.0 | 11        |
| 96  | High-resolution equipment for martensitic transformation in shape memory alloys: local studies in stress-strain-temperature. Measurement Science and Technology, 1993, 4, 456-461.                     | 2.6 | 13        |
| 97  | Hysteresis loops in stress induced β-18R martensite transformation in Cuî—,Znî—,Al. Acta Metallurgica Et<br>Materialia, 1992, 40, 3389-3394.                                                           | 1.8 | 20        |
| 98  | Automatic equipment with improved performances (ATD and DSC) in shape memory alloys studies.<br>Journal of Thermal Analysis, 1992, 38, 583-592.                                                        | 0.6 | 10        |
| 99  | Shape memory alloys: Local and global transformations by high resolution thermal analysis. Journal of Thermal Analysis, 1992, 38, 593-602.                                                             | 0.6 | 4         |
| 100 | SMA and SME in Cu-Zn-Al Alloys: Local Studies in α, ε, T Space. Materials Research Society Symposia<br>Proceedings, 1991, 246, 241.                                                                    | 0.1 | 0         |
| 101 | Study of the spinodal decomposition of an Fe-28Cr-2Mo-4Ni-Nb alloy by small-angle neutron scattering. Journal of Materials Science, 1990, 25, 4977-4980.                                               | 3.7 | 15        |
| 102 | Analysis of a martensitic transformation by optical microscopy, acoustic emission detection,<br>resistance measurements and differential scanning calorimetry. Thermochimica Acta, 1989, 155, 115-134. | 2.7 | 12        |
| 103 | Influence of the plastic strain amplitude on the stability of the spinodal microstructure in the cyclic deformation of a Fe-28Cr-2Mo-4Ni-Niî—,Nb alloy. Scripta Metallurgica, 1989, 23, 1633-1638.     | 1.2 | 8         |
| 104 | Magnetic frustration and lattice dimensionality in SrCr8Ga4O19. Solid State Communications, 1988, 65, 189-192.                                                                                         | 1.9 | 191       |
| 105 | The dynamics of bipyramidal ions in magnetoplumbite-like hexagonal ferrite systems revisited.<br>European Physical Journal B, 1988, 70, 379-386.                                                       | 1.5 | 13        |
| 106 | Thermal behaviour of a medieval sheltered building. Energy and Buildings, 1987, 10, 19-27.                                                                                                             | 6.7 | 5         |
| 107 | Neutron diffraction study of the crystallographic and magnetic structures of the BaFe12â^'xMnxO19<br>m-type hexagonal ferrites. Journal of Magnetism and Magnetic Materials, 1987, 69, 317-324.        | 2.3 | 33        |
| 108 | Hexagonal ferrite particles for perpendicular recording prepared by the precursor method. IEEE Transactions on Magnetics, 1987, 23, 22-24.                                                             | 2.1 | 33        |

| #   | Article                                                                                                                                                                                                  | IF             | CITATIONS       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|
| 109 | CEMs and Faraday rotation study of γ-Fe <inf>2</inf> O <inf>3</inf> -<br>Fe <inf>3</inf> O <inf>4</inf> films obtained by a new pyrolisis technique. IEEE<br>Transactions on Magnetics, 1987, 23, 74-76. | 2.1            | 6               |
| 110 | Cation distribution and random spin canting in LaZnFe11O19. Journal of Physics C: Solid State Physics, 1986, 19, 6605-6621.                                                                              | 1.5            | 32              |
| 111 | Propriétés magnétiques des ferrites hexagonaux: BaMg2–W et BaCo2–W. Physica Status Solidi A, 198<br>97, 511-519.                                                                                         | 36,<br>1.7     | 9               |
| 112 | Exchange interactions in BaFe12O19. Applied Physics A: Solids and Surfaces, 1986, 39, 221-225.                                                                                                           | 1.4            | 46              |
| 113 | Hyperfine fields and exchange interactions in BaLiFe17O27 W-type hexagonal ferrite. Hyperfine<br>Interactions, 1986, 28, 565-568.                                                                        | 0.5            | 5               |
| 114 | Mössbauer study of the mixed ferrimagnetic-spin glass phase in SrFe12â^'x CrxO19 hexagonal ferrites.<br>Hyperfine Interactions, 1986, 28, 569-572.                                                       | 0.5            | 9               |
| 115 | Thermal conductivity measurements on samples with low cross-sections. Journal of Thermal Analysis, 1986, 31, 279-284.                                                                                    | 0.6            | 2               |
| 116 | THERMAL REGULATION OF ATTACHED SOLAR SPACES. , 1986, , 151-155.                                                                                                                                          |                | 0               |
| 117 | On the amorphous to crystalline transformation of Fe80B20 by means of electrical and thermal<br>conductivity, X-ray diffraction, and Mössbauer measurements. Physica Status Solidi A, 1985, 87, 169-174. | 1.7            | 7               |
| 118 | A simple generalized model for the kinetics of crystallization in metallic glasses. Physica Status Solidi<br>A, 1985, 90, 127-133.                                                                       | 1.7            | 3               |
| 119 | MAGNETIC PROPERTIES OF BaFe4Mn2O11 R-TYPE HEXAGONAL FERRITE. Journal De Physique Colloque, 1985, 46, C6-339-C6-343.                                                                                      | 0.2            | 1               |
| 120 | Spin glass behaviour in an antiferromagnetic non-frustrated lattice: Sr2FeNbO6perovskite. Journal of<br>Physics C: Solid State Physics, 1985, 18, L401-L405.                                             | 1.5            | 75              |
| 121 | PARTICLE SIZE AND MAGNETIC PROPERTIES OF BaFe <sub>12</sub> O <sub>19</sub> PREPARED BY THE ORGANOMETALLIC PRECURSOR METHOD. Journal De Physique Colloque, 1985, 46, C6-335-C6-338.                      | 0.2            | 9               |
| 122 | DIPOLAR MAGNETIC ANISOTROPY IN SOME UNIAXIAL HEXAGONAL FERRITES. Journal De Physique Colloque, 1985, 46, C6-345-C6-348.                                                                                  | 0.2            | 7               |
| 123 | HIGH FIELD MAGNETIZATION STUDY OF SODIUM-ZINC SPINEL FERRITES. Journal De Physique Colloque, 1985, 46, C6-445-C6-448.                                                                                    | 0.2            | 2               |
| 124 | Mössbauer study of bipyramidal site occupancy in BaFe12â^'xMnxO19. Solid State Communications, 1984,<br>50, 821-824.                                                                                     | 1.9            | 20              |
| 125 | Cation distribution and high field magnetization studies on<br>SrFe <inf>12-x</inf> Cr <inf>x</inf> O <inf>19</inf> . IEEE Transactions on<br>Magnetics, 1984, 20, 1636-1638.                            | 2.1            | 29              |
| 126 | Synthesis, crystal and molecular structure and spectroscopic studies (i.r., electronic,13C-n.m.r. and) Tj ETQq0 0 0                                                                                      | rgBT /O<br>1.4 | verlock 10 Tf 5 |

and its chromium(III) analogue. Transition Metal Chemistry, 1984, 9, 57-62.

| #   | Article                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Structural and magnetic properties of BaFe12-xMnxO19 hexagonal ferrites. Journal of Magnetism and<br>Magnetic Materials, 1984, 44, 118-128.                                | 2.3 | 69        |
| 128 | Crystal structure and cationic distribution of BaFe4Ti2O11 R-type hexagonal ferrite. Materials<br>Research Bulletin, 1983, 18, 1543-1553.                                  | 5.2 | 34        |
| 129 | M×ssbauer emission studies of LiNb0 <sub>3</sub> : <sup>57</sup> Co. Radiation Effects, 1983, 73, 173-177.                                                                 | 0.4 | 0         |
| 130 | Damping by SMA in Civil Engineering Structures. Advances in Science and Technology, 0, , .                                                                                 | 0.2 | 1         |
| 131 | Oxidation Behaviour of Stainles Steel Matrix with TiC and TiC+TiB <sub>2</sub> SHS<br>Powders in a Thermal Spray Process. Defect and Diffusion Forum, 0, 289-292, 455-460. | 0.4 | 2         |
| 132 | SMA in Mitigation of Extreme Loads in Civil Engineering: Damping Actions in Stayed Cables. Applied<br>Mechanics and Materials, 0, 82, 539-544.                             | 0.2 | 20        |
| 133 | SMA Fatigue in Civil Engineering Applications. Advances in Science and Technology, 0, , 168-177.                                                                           | 0.2 | 1         |
| 134 | Analysis and discussion of maritime accidents in the spanish fishing sector. , 0, , .                                                                                      |     | 0         |