
Changjun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4480681/publications.pdf Version: 2024-02-01

CHANCIUN YANC

#	Article	IF	CITATIONS
1	Regulation of post-ischemic inflammatory response: A novel function of the neuronal tyrosine phosphatase STEP. Brain, Behavior, and Immunity, 2021, 93, 141-155.	4.1	2
2	Neurovascular protection by adropin in experimental ischemic stroke through an endothelial nitric oxide synthase-dependent mechanism. Redox Biology, 2021, 48, 102197.	9.0	17
3	Genetic Deletion or Pharmacological Inhibition of Cyclooxygenase-2 Reduces Blood-Brain Barrier Damage in Experimental Ischemic Stroke. Frontiers in Neurology, 2020, 11, 887.	2.4	34
4	Epicatechin-3-Gallate Signaling and Protection against Cardiac Ischemia/Reperfusion Injury. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 663-674.	2.5	12
5	Protective Effects of L-902,688, a Prostanoid EP4 Receptor Agonist, against Acute Blood-Brain Barrier Damage in Experimental Ischemic Stroke. Frontiers in Neuroscience, 2018, 12, 89.	2.8	26
6	Targeting resolution of neuroinflammation after ischemic stroke with a lipoxin A ₄ analog: Protective mechanisms and longâ€ŧerm effects on neurological recovery. Brain and Behavior, 2017, 7, e00688.	2.2	47
7	Sustained Neurological Recovery After Stroke in Aged Rats Treated With a Novel Prostacyclin Analog. Stroke, 2017, 48, 1948-1956.	2.0	22
8	Selective Inhibition of Janus Kinase 3 Has No Impact on Infarct Size or Neurobehavioral Outcomes in Permanent Ischemic Stroke in Mice. Frontiers in Neurology, 2017, 8, 363.	2.4	8
9	Detrimental role of the EP1 prostanoid receptor in blood-brain barrier damage following experimental ischemic stroke. Scientific Reports, 2015, 5, 17956.	3.3	59
10	Neurovascular protection by postâ€ischemic intravenous injections of the lipoxin A 4 receptor agonist, BML â€111, in a rat model of ischemic stroke. Journal of Neurochemistry, 2014, 129, 130-142.	3.9	43
11	Fluorometric immunocapture assay for the specific measurement of matrix metalloproteinase-9 activity in biological samples: application to brain and plasma from rats with ischemic stroke. Molecular Brain, 2013, 6, 14.	2.6	28
12	Early ischaemic preconditioning requires Akt- and PKA-mediated activation of eNOS via serine1176 phosphorylation. Cardiovascular Research, 2013, 97, 33-43.	3.8	66
13	Endothelial nitric oxide synthase Sâ€glutathionylation and Ser1177 phosphorylation modulate myocardial protection. FASEB Journal, 2013, 27, 1191.5.	0.5	0
14	Reciprocal Endothelial NO Synthase (eNOS) Ser1177 Phosphorylation and Thr495 Dephosphorylation is Key for Robust in vivo Cardioprotection: Therapeutic Implication of a Novel Ischemic Preconditioning Stimuli. FASEB Journal, 2013, 27, 1130.9.	0.5	0
15	Novel Rapidâ€Multipleâ€Shortâ€Cycle Preconditioning Stimuli Induces Robust Cardioprotective Signaling Mechanisms and Protects the Heart against in vivo Ischemia Reperfusion Injury: An Effective Approach with Clinical Justification. FASEB Journal, 2012, 26, 1136.5.	0.5	1
16	Akt―and PKAâ€mediated endothelial nitric oxide synthase activation triggers early ischemic preconditioning in isolated rat hearts. FASEB Journal, 2011, 25, 1097.14.	0.5	1
17	Role of Endothelial Nitric Oxide Synthase (eNOS) in <i>in vivo</i> Cardioprotection Mediated by Ischemic Preconditioning (IPC) and Ischemic Postconditioning (IPostC) in Mice and Rats. FASEB Journal, 2011, 25, 1033.16.	0.5	0
18	lschemic Postconditioning (IPostC) Protects the Heart against in vivo Ischemia/Reperfusion (I/R) Injury with Effective Akt and ERK1/2 Activation and Decreased Superoxide Generation. FASEB Journal, 2011, 25, 1097.5.	0.5	0

Changjun Yang

#	Article	IF	CITATIONS
19	Combination of HSCCC and Sephadex LH-20 methods. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 861, 140-144.	2.3	31
20	Identification of a PKCÎμ-dependent regulation of myocardial contraction by epicatechin-3-gallate. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H345-H353.	3.2	23
21	Ouabain triggers preconditioning through activation of the Na+,K+-ATPase signaling cascade in rat hearts. Cardiovascular Research, 2007, 73, 488-496.	3.8	62