Bernhard Moser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4480659/publications.pdf

Version: 2024-02-01

96 papers

20,608 citations

20815 60 h-index 95 g-index

97 all docs 97 docs citations

97 times ranked 18262 citing authors

#	Article	IF	CITATIONS
1	Human Chemokines: An Update. Annual Review of Immunology, 1997, 15, 675-705.	21.8	2,104
2	Interleukin-8 and Related Chemotactic Cytokinesâ€"CXC and CC Chemokines. Advances in Immunology, 1993, , 97-179.	2.2	1,672
3	The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature, 1996, 382, 833-835.	27.8	1,662
4	Lymphocyte traffic control by chemokines. Nature Immunology, 2001, 2, 123-128.	14.5	1,115
5	Cxc Chemokine Receptor 5 Expression Defines Follicular Homing T Cells with B Cell Helper Function. Journal of Experimental Medicine, 2000, 192, 1553-1562.	8.5	1,094
6	CCR5 is characteristic of Th1 lymphocytes. Nature, 1998, 391, 344-345.	27.8	886
7	Interferon–inducible T Cell Alpha Chemoattractant (I-TAC): A Novel Non-ELR CXC Chemokine with Potent Activity on Activated T Cells through Selective High Affinity Binding to CXCR3. Journal of Experimental Medicine, 1998, 187, 2009-2021.	8.5	784
8	Chemokines: multiple levels of leukocyte migration controlâ [†] . Trends in Immunology, 2004, 25, 75-84.	6.8	757
9	B Cell–attracting Chemokine 1, a Human CXC Chemokine Expressed in Lymphoid Tissues, Selectively Attracts B Lymphocytes via BLR1/CXCR5. Journal of Experimental Medicine, 1998, 187, 655-660.	8.5	733
10	Professional Antigen-Presentation Function by Human gd T Cells. Science, 2005, 309, 264-268.	12.6	607
11	Follicular B helper T cells in antibody responses and autoimmunity. Nature Reviews Immunology, 2005, 5, 853-865.	22.7	541
12	Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization. European Journal of Immunology, 1998, 28, 3696-3705.	2.9	383
13	Interleukin-8 and the chemokine family. International Journal of Immunopharmacology, 1995, 17, 103-108.	1.1	351
14	The chemokine SLC is expressed in T cell areas of lymph nodes and mucosal lymphoid tissues and attracts activated T cells via CCR7. European Journal of Immunology, 1998, 28, 2025-2034.	2.9	326
15	Structure-activity relationships of chemokines. Journal of Leukocyte Biology, 1995, 57, 703-711.	3.3	325
16	The chemokine SDF-1, stromal cell-derived factor 1, attracts early stage B cell precursors via the chemokine receptor CXCR4. European Journal of Immunology, 1997, 27, 1788-1793.	2.9	319
17	Monocyte chemotactic proteins MCPâ€1, MCPâ€2, and MCPâ€3 are major attractants for human CD4 ⁺ and CD8 ⁺ T lymphocytes. FASEB Journal, 1994, 8, 1055-1060.	0.5	304
18	Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5+ TH2 cells. Nature Immunology, 2011, 12, 167-177.	14.5	274

#	Article	IF	CITATIONS
19	HIV blocked by chemokine antagonist. Nature, 1996, 383, 400-400.	27.8	273
20	Homing chemokines in rheumatoid arthritis. Arthritis Research, 2002, 4, 233.	2.0	253
21	Efficient Interaction of HIV-1 with Purified Dendritic Cells via Multiple Chemokine Coreceptors. Journal of Experimental Medicine, 1996, 184, 2433-2438.	8.5	250
22	Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues. Molecular Immunology, 2005, 42, 799-809.	2.2	250
23	Cross-presenting human $\hat{I}^3\hat{I}$ T cells induce robust CD8 $\langle \sup \rangle + \langle \sup \rangle$ $\hat{I}\pm\hat{I}^2$ T cell responses. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 2307-2312.	7.1	229
24	Homing and Function of Human Skin $\hat{I}^3\hat{I}$ T Cells and NK Cells: Relevance for Tumor Surveillance. Journal of Immunology, 2006, 176, 4331-4336.	0.8	219
25	The chemokine receptor CXCR3 mediates rapid and shear-resistant adhesion-induction of effector T lymphocytes by the chemokines IP10 and Mig. European Journal of Immunology, 1998, 28, 961-972.	2.9	215
26	A Skin-selective Homing Mechanism for Human Immune Surveillance T Cells. Journal of Experimental Medicine, 2004, 199, 1265-1275.	8.5	206
27	Monocyte Selectivity and Tissue Localization Suggests a Role for Breast and Kidney–Expressed Chemokine (Brak) in Macrophage Development. Journal of Experimental Medicine, 2001, 194, 855-862.	8.5	193
28	Identification of CCR8, the Receptor for the Human CC Chemokine I-309. Journal of Biological Chemistry, 1997, 272, 17251-17254.	3.4	167
29	Chemokines and Their Receptors in Lymphocyte Traffic and HIV Infection. Advances in Immunology, 1999, 74, 127-180.	2.2	166
30	Chemical synthesis, purification, and characterization of two inflammatory proteins, neutrophil activating peptide 1 (interleukin-8) and neutrophil activating peptide 2. Biochemistry, 1991, 30, 3128-3135.	2.5	162
31	Flexible migration program regulates $\hat{I}^3\hat{I}^*$ T-cell involvement in humoral immunity. Blood, 2003, 102, 3693-3701.	1.4	158
32	Characterization of Human T Cells That Regulate Neutrophilic Skin Inflammation. Journal of Immunology, 2004, 173, 2151-2158.	0.8	154
33	Cutaneous CXCL14 Targets Blood Precursors to Epidermal Niches for Langerhans Cell Differentiation. Immunity, 2005, 23, 331-342.	14.3	134
34	Cytokines and Chemokines in Meningeal Inflammation: Biology and Clinical Implications. Clinical Infectious Diseases, 1999, 28, 1-11.	5.8	130
35	A Rapid Crosstalk of Human $\hat{I}^3\hat{I}$ T Cells and Monocytes Drives the Acute Inflammation in Bacterial Infections. PLoS Pathogens, 2009, 5, e1000308.	4.7	114
36	Human Neutrophil Clearance of Bacterial Pathogens Triggers Anti-Microbial Î ³ δT Cell Responses in Early Infection. PLoS Pathogens, 2011, 7, e1002040.	4.7	106

3

#	Article	IF	CITATIONS
37	CXCR5+ T cells: follicular homing takes center stage in T-helper-cell responses. Trends in Immunology, 2002, 23, 250-254.	6.8	105
38	Macrophages exposed to Mycobacterium tuberculosis release chemokines able to recruit selected leucocyte subpopulations: focus on gammadelta cells. Immunology, 2003, 108, 365-374.	4.4	101
39	Cutting Edge: Induction of Follicular Homing Precedes Effector Th Cell Development. Journal of Immunology, 2001, 167, 6082-6086.	0.8	99
40	Microbe-Specific Unconventional T Cells Induce Human Neutrophil Differentiation into Antigen Cross-Presenting Cells. Journal of Immunology, 2014, 193, 3704-3716.	0.8	93
41	Interleukin-8 Immunoreactivity in the Skin of Healthy Subjects and Patients with Palmoplantar Pustulosis and Psoriasis. Journal of Investigative Dermatology, 1992, 98, 96-101.	0.7	92
42	Interleukin-8 and Related Chemotactic Cytokines. Chest, 1994, 105, 95S-98S.	0.8	90
43	ILâ€21 enhances the potential of human γδT cells to provide Bâ€cell help. European Journal of Immunology, 2012, 42, 110-119.	2.9	90
44	Blocking Chemokine Receptors. Journal of Experimental Medicine, 1997, 186, 1189-1191.	8.5	89
45	Lymphocyte Responses to Chemokines. International Reviews of Immunology, 1998, 16, 323-344.	3.3	87
46	Structure and function of the murine chemokine receptor CXCR3. European Journal of Immunology, 1999, 29, 3804-3812.	2.9	85
47	Potent and Broad-Spectrum Antimicrobial Activity of CXCL14 Suggests an Immediate Role in Skin Infections. Journal of Immunology, 2009, 182, 507-514.	0.8	82
48	Activation-dependent modulation of B lymphocyte migration to chemokines. International Immunology, 2000, 12, 1285-1292.	4.0	81
49	Chemokines: Control of Primary and Memory T-Cell Traffic. Immunologic Research, 2005, 31, 57-74.	2.9	79
50	Grand Challenges. Frontiers in Immunology, 2011, 2, 1.	4.8	79
51	Epidermis instructs skin homing receptor expression in human T cells. Blood, 2012, 120, 4591-4598.	1.4	77
52	Expression of high- and low-affinity receptors for C3a on the human mast cell line, HMC-1. European Journal of Immunology, 1996, 26, 753-758.	2.9	76
53	γδT-APCs: a novel tool for immunotherapy?. Cellular and Molecular Life Sciences, 2011, 68, 2443-2452.	5.4	71
54	Antimicrobial Activities of Chemokines: Not Just a Side-Effect?. Frontiers in Immunology, 2012, 3, 213.	4.8	71

#	Article	IF	CITATIONS
55	CCR8 Expression Defines Tissue-Resident Memory T Cells in Human Skin. Journal of Immunology, 2018, 200, 1639-1650.	0.8	71
56	γδT cells: novel initiators of adaptive immunity. Immunological Reviews, 2007, 215, 89-102.	6.0	70
57	Failure to detect production of IL-10 by activated human neutrophils. Nature Immunology, 2011, 12, 1017-1018.	14.5	70
58	î³Î´T cells: an alternative type of professional APC. Trends in Immunology, 2006, 27, 112-118.	6.8	67
59	Human VÎ ³ 9/Vδ2 T cells: Innate adaptors of the immune system. Cellular Immunology, 2015, 296, 10-21.	3.0	65
60	Murine CXCL14 Is Dispensable for Dendritic Cell Function and Localization within Peripheral Tissues. Molecular and Cellular Biology, 2007, 27, 983-992.	2.3	63
61	Prolonged antigen survival and cytosolic export in cross-presenting human $\hat{I}^3\hat{I}'T$ cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8730-8735.	7.1	60
62	CXCR5, the Defining Marker for Follicular B Helper T (TFH) Cells. Frontiers in Immunology, 2015, 6, 296.	4.8	60
63	Monocytes and Î ³ δT cells control the acute-phase response to intravenous zoledronate: Insights from a phase IV safety trial. Journal of Bone and Mineral Research, 2013, 28, 464-471.	2.8	59
64	Epithelial chemokine CXCL14 synergizes with CXCL12 <i>via</i> allosteric modulation of CXCR4. FASEB Journal, 2017, 31, 3084-3097.	0.5	58
65	Constitutive expression of CXCL14 in healthy human and murine epithelial tissues. Cytokine, 2008, 44, 248-255.	3.2	54
66	Expanded Human Blood-Derived γÎÂT Cells Display Potent Antigen-Presentation Functions. Frontiers in Immunology, 2014, 5, 344.	4.8	52
67	Synergistic targeting of breast cancer stemâ€like cells by human γδT cells and CD8 ⁺ T cells. Immunology and Cell Biology, 2017, 95, 620-629.	2.3	51
68	CXCL14 Displays Antimicrobial Activity against Respiratory Tract Bacteria and Contributes to Clearance of <i>Streptococcus pneumoniae</i> Pulmonary Infection. Journal of Immunology, 2015, 194, 5980-5989.	0.8	50
69	Monocytes and Î ³ δT cells: close encounters in microbial infection. Trends in Immunology, 2009, 30, 562-568.	6.8	48
70	The interleukin-8 receptor B and CXC chemokines can mediate transendothelial migration of human skin homing T cells. European Journal of Immunology, 1996, 26, 2056-2061.	2.9	46
71	Lymphocyte traffic control by chemokines: follicular B helper T cells. Immunology Letters, 2003, 85, 105-112.	2.5	45
72	B?cells alter the phenotype and function of follicular-homing CXCR5+ T?cells. European Journal of Immunology, 2004, 34, 3562-3571.	2.9	43

#	Article	IF	CITATIONS
73	Unconventional Human T Cells Accumulate at the Site of Infection in Response to Microbial Ligands and Induce Local Tissue Remodeling. Journal of Immunology, 2016, 197, 2195-2207.	0.8	42
74	Antigen-Presenting Human $\hat{I}^{3}\hat{I}'$ T Cells Promote Intestinal CD4+ T Cell Expression of IL-22 and Mucosal Release of Calprotectin. Journal of Immunology, 2017, 198, 3417-3425.	0.8	42
75	Systemic Neutralization of Interleukin-8 Markedly Reduces Neutrophilic Pleocytosis during Experimental Lipopolysaccharide-Induced Meningitis in Rabbits. Infection and Immunity, 2000, 68, 5756-5763.	2.2	35
76	The Human Cutaneous Chemokine System. Frontiers in Immunology, 2011, 2, 33.	4.8	31
77	The Antigen-Presenting Potential of $\hat{V^{3}9}\hat{V^{2}}$ T Cells During Plasmodium falciparum Blood-Stage Infection. Journal of Infectious Diseases, 2017, 215, 1569-1579.	4.0	31
78	A Promising Target for Treatment of Multidrug-Resistant Bacterial Infections. Antimicrobial Agents and Chemotherapy, 2011, 55, 3635-3636.	3.2	25
79	Peripheral Tissue Chemokines: Homeostatic Control of Immune Surveillance T Cells. Trends in Immunology, 2018, 39, 734-747.	6.8	25
80	Skin Metabolites Define a New Paradigm in the Localization of Skin Tropic Memory T Cells. Journal of Immunology, 2015, 195, 96-104.	0.8	22
81	CXCL14 Preferentially Synergizes With Homeostatic Chemokine Receptor Systems. Frontiers in Immunology, 2020, 11, 561404.	4.8	20
82	$\hat{V^{3}}$ 9 $\hat{V^{2}}$ 7 Cells Concurrently Kill Cancer Cells and Cross-Present Tumor Antigens. Frontiers in Immunology, 2021, 12, 645131.	4.8	19
83	Potential Use of γδT Cell-Based Vaccines in Cancer Immunotherapy. Frontiers in Immunology, 2014, 5, 512.	4.8	18
84	Chemokines and HIV: A remarkable synergism. Trends in Microbiology, 1997, 5, 88-90.	7.7	16
85	Chemokine Receptor-Targeted Therapies: Special Case for CCR8. Cancers, 2022, 14, 511.	3.7	16
86	Chemokines: role in immune cell traffic. European Cytokine Network, 2003, 14, 204-10.	2.0	14
87	The HIV-1 Life Cycle is Blocked at Two Different Points in Mature Dendritic Cells. Advances in Experimental Medicine and Biology, 1997, 417, 415-419.	1.6	13
88	A distinct chemokine axis does not account for enrichment of Foxp3 ⁺ Â <scp>CD</scp> 4 ⁺ T cells in carcinogenâ€induced fibrosarcomas. Immunology, 2015, 145, 94-104.	4.4	9
89	Chemokine Pathways in Cutaneous Melanoma: Their Modulation by Cancer and Exploitation by the Clinician. Cancers, 2021, 13, 5625.	3.7	8
90	Suppression of pro-inflammatory T-cell responses by human mesothelial cells. Nephrology Dialysis Transplantation, 2013, 28, 1743-1750.	0.7	6

#	Article	IF	CITATIONS
91	LHRH RECEPTORS AND LHRH RECEPTOR-BEARING CELLS IN PITUITARIES OF STREPTOZOCIN DIABETIC MALE RATS. Pharmacological Research, 1997, 35, 321-327.	7.1	5
92	T-Cell Memory: The Importance of Chemokine-Mediated Cell Attraction. Current Biology, 2006, 16, R504-R507.	3.9	5
93	Comment on "The Vast Majority of CLA+ T Cells Are Resident in Normal Skin― Journal of Immunology, 2006, 177, 1375-1376.	0.8	5
94	Tumor-killing γÎ-TCRs take center stage. Blood, 2012, 120, 5093-5094.	1.4	4
95	Editorial: History of Chemoattractant Research. Frontiers in Immunology, 2015, 6, 548.	4.8	2
96	Chemokines. , 0, , 397-416.		0