
Karolina ChaÅ,upka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4480345/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Methanol oxidation on VSiBEA zeolites: Influence of V content on the catalytic properties. Journal of Catalysis, 2011, 281, 169-176.	6.2	53
2	Mononuclear pseudo-tetrahedral V species of VSiBEA zeolite as the active sites of the selective oxidative dehydrogenation of propane. Journal of Catalysis, 2013, 305, 46-55.	6.2	39
3	SrAl2O4 spinel phase as active phase of transesterification of rapeseed oil. Applied Catalysis B: Environmental, 2015, 164, 176-183.	20.2	37
4	Partial oxidation of methane over NiO/La2O3 bifunctional catalyst II: Global kinetics of methane total oxidation, dry reforming and partial oxidation. Applied Catalysis B: Environmental, 2015, 165, 389-398.	20.2	33
5	Cu/ZnxAlyOz supported catalysts (ZnO: Al2O3=1, 2, 4) for methanol synthesis. Catalysis Today, 2011, 176, 21-27.	4.4	31
6	Partial oxidation of methane on NixAlBEA and NixSiBEA zeolite catalysts: Remarkable effect of preparation procedure and Ni content. Applied Catalysis B: Environmental, 2014, 146, 227-236.	20.2	31
7	Cobalt Based Catalysts Supported on Two Kinds of Beta Zeolite for Application in Fischer-Tropsch Synthesis. Catalysts, 2019, 9, 497.	3.5	25
8	Fischer-Tropsch reaction on Co-containing microporous and mesoporous Beta zeolite catalysts: the effect of porous size and acidity. Catalysis Today, 2020, 354, 109-122.	4.4	23
9	The remarkable effect of the preparation procedure on the catalytic activity of CoBEA zeolites in the Fischer–Tropsch synthesis. Microporous and Mesoporous Materials, 2015, 211, 9-18.	4.4	19
10	The catalytic activity of Fe-containing SiBEA zeolites in Fischer–Tropsch synthesis. Catalysis Today, 2015, 257, 117-121.	4.4	18
11	Effect of postsynthesis preparation procedure on the state of copper in CuBEA zeolites and its catalytic properties in SCR of NO with NH3. Applied Catalysis A: General, 2016, 523, 332-342.	4.3	18
12	Modification of Ni/ZrO2 catalyst by selected rare earth metals as a promising way for increase in the efficiency of thermocatalytic conversion of lignocellulosic biomass to hydrogen-rich gas. Fuel, 2020, 276, 118110.	6.4	17
13	Effect of the support composition on catalytic and physicochemical properties of Ni catalysts in oxy-steam reforming of methane. Catalysis Today, 2021, 364, 46-60.	4.4	16
14	Hydrogen production from biomass woodchips using Ni/CaO–ZrO2 catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2017, 121, 97-107.	1.7	14
15	Dealuminated Beta Zeolite Modified by Alkaline Earth Metals. Journal of Chemistry, 2018, 2018, 1-11.	1.9	13
16	The Effect of the Activation Process and Metal Oxide Addition (CaO, MgO, SrO) on the Catalytic and Physicochemical Properties of Natural Zeolite in Transesterification Reaction. Materials, 2021, 14, 2415.	2.9	13
17	Role of the activation process on catalytic properties of iron supported catalyst in Fischer-Tropsch synthesis. Journal of the Energy Institute, 2020, 93, 565-580.	5.3	12
18	The Catalytic Performance of Ni-Co/Beta Zeolite Catalysts in Fischer-Tropsch Synthesis. Catalysts, 2020. 10. 112.	3.5	11

Karolina ChaÅ, upka

#	Article	IF	CITATIONS
19	Hydrogen Production via the Oxy-Steam Reforming of LNG or Methane on Ni Catalysts. Catalysts, 2020, 10, 346.	3.5	10
20	Impact of Support (MCF, ZrO2, ZSM-5) on the Efficiency of Ni Catalyst in High-Temperature Conversion of Lignocellulosic Biomass to Hydrogen-Rich Gas. Materials, 2019, 12, 3792.	2.9	9
21	Comparative Studies of Fischer-Tropsch Synthesis on Iron Catalysts Supported on Al2O3-Cr2O3 (2:1), Multi-Walled Carbon Nanotubes or BEA Zeolite Systems. Catalysts, 2019, 9, 605.	3.5	7
22	Preparation of two series of VxSiBeta zeolite catalysts with V centres in framework and extra-framework positions and their application in selective oxidation of methanol. Applied Catalysis A: General, 2019, 579, 1-8.	4.3	7
23	Hydrogen-Rich Gas Production by Upgrading of Biomass Pyrolysis Vapors over NiBEA Catalyst: Impact of Dealumination and Preparation Method. Energy & Fuels, 2020, 34, 16936-16947.	5.1	7
24	Biodiesel Production on Monometallic Pt, Pd, Ru, and Ag Catalysts Supported on Natural Zeolite. Materials, 2021, 14, 48.	2.9	7
25	Effect of Ag-Addition on the Catalytic and Physicochemical Properties of Ni/ZrO2 Catalyst in Oxy-Steam Reforming of CH4 and LNG Processes. Catalysts, 2020, 10, 855.	3.5	6
26	The Influence of Si/Al Ratio on the Physicochemical and Catalytic Properties of MgO/ZSM-5 Catalyst in Transesterification Reaction of Rapeseed Oil. Catalysts, 2021, 11, 1260.	3.5	6
27	The Studies of Archaeological Pottery with the Use of Selected Analytical Techniques. Critical Reviews in Analytical Chemistry, 2017, 47, 490-498.	3.5	5
28	The Impact of Reduction Temperature and Nanoparticles Size on the Catalytic Activity of Cobalt-Containing BEA Zeolite in Fischer–Tropsch Synthesis. Catalysts, 2020, 10, 553.	3.5	5
29	Analytical and thermal investigations of new solid Y(III) and La(III) complexes. Journal of Thermal Analysis and Calorimetry, 2019, 137, 481-490.	3.6	0