Atef Hamada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4480323/publications.pdf

Version: 2024-02-01

315616 304602 1,573 53 22 38 citations h-index g-index papers 53 53 53 1022 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mechanical performance and formability of laser-welded dissimilar butt joints between medium-Mn stainless steel and high-strength carbon steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 831, 142200.	2.6	14
2	Enhancement of electrical conductivity and corrosion resistance by gold-nickel coating of additively manufactured AlSi10Mg alloy. Journal of Materials Research and Technology, 2022, 17, 521-536.	2.6	8
3	High-Speed Erichsen Testing of Grain-Refined 301LN Austenitic Stainless Steel Processed by Double-Reversion Annealing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 2174-2194.	1.1	6
4	On the current research progress of metallic materials fabricated by laser powder bed fusion process: a review. Journal of Materials Research and Technology, 2022, 20, 681-707.	2.6	63
5	A new processing route to develop nano-grained structure of a TRIP-aided austenitic stainless-steel using double reversion fast-heating annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 808, 140917.	2.6	15
6	Optimization of the tensile-shear strength of laser-welded lap joints of ultra-high strength abrasion resistance steel. Journal of Materials Research and Technology, 2021, 11, 1434-1442.	2.6	15
7	Microstructure, Mechanical Properties of Extruded Aluminum at Different Ram Speeds in Micro/Meso-Scale. Metallography, Microstructure, and Analysis, 2021, 10, 402-409.	0.5	1
8	Grain size affecting the deformation characteristics via micro-injection upsetting. Materials Science and Technology, 2021, 37, 918-929.	0.8	0
9	Dissimilar Laser Welding of Austenitic Stainless Steel and Abrasion-Resistant Steel: Microstructural Evolution and Mechanical Properties Enhanced by Post-Weld Heat Treatment. Materials, 2021, 14, 5580.	1.3	12
10	Study on the Mechanical Performance of Dissimilar Butt Joints between Low Ni Medium-Mn and Ni-Cr Austenitic Stainless Steels Processed by Gas Tungsten Arc Welding. Metals, 2021, 11, 1439.	1.0	14
11	Enhancement of corrosion protection of AISI 201 austenitic stainless steel in acidic chloride solutions by Ce-doped TiO2 coating. Surface and Coatings Technology, 2021, 423, 127618.	2.2	15
12	Mechanical characterization of laser-welded double-lap joints in ultra-high and low strength steels for sandwich panel applications. Materials Today: Proceedings, 2020, 28, 455-460.	0.9	6
13	Effect of Grain Structure on the Mechanical and Corrosion Behavior of Advanced Medium Mn Stainless TWIP Steel. Materials Science Forum, 2020, 998, 15-20.	0.3	1
14	Enhancement of grain structure and mechanical properties of a high-Mn twinning-induced plasticity steel bearing Al–Si by fast-heating annealing. Materials Science & Degree amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 795, 139949.	2.6	6
15	Micro/Meso-Scale Equal Channel Angular Pressing of Al 1070 Alloy: Microstructure and Mechanical Properties. Journal of Materials Engineering and Performance, 2020, 29, 6201-6211.	1.2	3
16	Impact of precipitates on the hydrogen embrittlement behavior of a V-alloyed medium-manganese austenitic stainless steel. Journal of Materials Research and Technology, 2020, 9, 13524-13538.	2.6	30
17	Enhancement of electrical conductivity and corrosion resistance by silver shellâ€'copper core coating of additively manufactured AlSi10Mg alloy. Surface and Coatings Technology, 2020, 403, 126426.	2.2	21
18	Microstructural evolution during extrusion of equal channel angular-pressed AA1070 alloy in micro/mesoscale. Materials Science and Technology, 2020, 36, 1169-1177.	0.8	8

#	Article	IF	CITATIONS
19	Laser welding of selective laser melted Ti6Al4V: Microstructure and mechanical properties. Materials Today: Proceedings, 2020, 28, 907-911.	0.9	10
20	Development of a Cr-Ni-V-N Medium Manganese Steel with Balanced Mechanical and Corrosion Properties. Metals, 2019, 9, 705.	1.0	27
21	Effect of Al content and cold rolling on the microstructure and mechanical properties of Al5Cr12Fe35Mn28Ni20 high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 380-390.	2.6	39
22	Effect of microstructure on mechanical properties of a novel high-Mn TWIP stainless steel bearing vanadium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 718, 301-304.	2.6	19
23	High-temperature deformation behavior and microstructural characterization of high-Mn bearing titanium-based alloy. Materials Characterization, 2018, 139, 176-185.	1.9	19
24	Ductility and formability of three high-Mn TWIP steels in quasi-static and high-speed tensile and Erichsen tests. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 255-265.	2.6	32
25	Effect of silicon on the hot deformation behavior of microalloyed TWIP-type stainless steels. Materials and Design, 2018, 154, 117-129.	3.3	27
26	Physically based modeling and characterization of hot deformation behavior of twinning-induced plasticity steels bearing vanadium and niobium. Materials Science & Department of the Materials: Properties, Microstructure and Processing, 2017, 703, 85-96.	2.6	20
27	Effects of reversion and recrystallization on microstructure and mechanical properties of Nb-alloyed low-Ni high-Mn austenitic stainless steels. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 657, 359-370.	2.6	79
28	High temperature deformation behavior of a stainless steel fiber-reinforced copper matrix composite. Materials Science & Department of the Structural Materials: Properties, Microstructure and Processing, 2016, 669, 469-479.	2.6	18
29	Influence of prior cold rolling reduction on microstructure and mechanical properties of a reversion annealed high-Mn austenitic steel. Materials Science & Djineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 650, 119-128.	2.6	23
30	Enhancement of mechanical properties of a TRIP-aided austenitic stainless steel by controlled reversion annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 154-159.	2.6	49
31	Indentation property and corrosion resistance of electroless nickel–phosphorus coatings deposited on austenitic high-Mn TWIP steel. Applied Surface Science, 2015, 356, 1-8.	3.1	34
32	The microstructural evolution of friction stir welded AA6082-T6 aluminum alloy during cyclic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 642, 366-376.	2.6	31
33	Effects of Cyclic Pre-straining on Mechanical Properties of an Austenitic Microalloyed High-Mn Twinning-induced Plasticity Steel. Procedia Engineering, 2014, 74, 47-52.	1.2	10
34	High temperature deformation behavior of two as-cast high-manganese TWIP steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 582, 15-21.	2.6	29
35	Contribution of deformation mechanisms to strength and ductility in two Cr–Mn grade austenitic stainless steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 559, 336-344.	2.6	85
36	Low strain rate deformation behavior of a Cr–Mn austenitic steel at â^'80 °C. Acta Materialia, 2012, 60, 6907-6919.	3.8	27

#	Article	IF	CITATIONS
37	Non-destructive determination of the yield strength and flow properties of high-manganese twinning-induced plasticity steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 558, 766-770.	2.6	24
38	Some aspects of the cyclic behavior of twinning-induced plasticity steels. Scripta Materialia, 2012, 66, 1034-1039.	2.6	33
39	Hot ductility behaviour of high-Mn TWIP steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1819-1827.	2.6	86
40	Fatigue behavior of ultrafine-grained and coarse-grained Cr–Ni austenitic stainless steels. Materials Science & Science & Properties, Microstructure and Processing, 2011, 528, 3890-3896.	2.6	32
41	High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels. Materials Science & Science amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5715-5722.	2.6	73
42	Fatigue behavior of high-Mn TWIP steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 517, 68-77.	2.6	128
43	High Temperature Flow Stress and Recrystallization Behavior of High-Mn TWIP Steels. ISIJ International, 2007, 47, 907-912.	0.6	40
44	The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels. Materials Science & Description on the Structural Materials: Properties, Microstructure and Processing, 2007, 467, 114-124.	2.6	215
45	Structure and microstructure evolution during martensitic transformation in wrought Fe–26Mn–0.14C austenitic steel: an effect of cooling rate. Journal of Applied Crystallography, 2007, 40, 354-361.	1.9	19
46	Electrochemical corrosion behaviour of a novel submicron-grained austenitic stainless steel in an acidic NaCl solution. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 431, 211-217.	2.6	76
47	Study on Cyclic Strain Localization and Fatigue Fracture Mechanism in High Manganese Twinning-Induced Plasticity Steels. Materials Science Forum, 0, 762, 411-417.	0.3	6
48	Effect of Cold Rolling on the Microstructure and Hardness of Al ₅ Cr ₁₂ Fe ₃₅ Mn _{28<td>;Ni&\$t;sub</td><td>&gt;20</si</td>}	;N i&\$t ;sub	& gt ;20</si
49	Effect of the Cyclic Extrusion and Compression Processing on Microstructure and Mechanical Properties of Al-1%Cu Alloy. Key Engineering Materials, 0, 780, 93-97.	0.4	3
50	Microstructure and Mechanical Properties Change with Cold Deformation of the Biomedical Ti-17Nb-6Ta-3Zr Alloy. Key Engineering Materials, 0, 780, 15-19.	0.4	2
51	Ballistic Impact Simulation of Proposed Bullet Proof Vest Made of TWIP Steel, Water and Polymer Sandwich Composite Using FE-SPH Coupled Technique. Key Engineering Materials, 0, 786, 302-313.	0.4	5
52	Multiscale Finite Element Simulation of Thermal Properties and Mechanical Strength of Reduced Graphene Oxide Reinforced Aluminium Matrix Composite. Key Engineering Materials, 0, 821, 39-46.	0.4	0
53	Microstructural Evolution and Tensile Strength of Laser-Welded Butt Joints of Ultra-High Strength Steels: Low and High Alloy Steels. Key Engineering Materials, 0, 883, 250-257.	0.4	6