
Analia Alvarez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/448026/publications.pdf Version: 2024-02-01

ΔΝΑΓΙΑ ΔΙΛΑΡΕΖ

#	Article	IF	CITATIONS
1	Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere, 2017, 166, 41-62.	8.2	426
2	Bacterial Bio-Resources for Remediation of Hexachlorocyclohexane. International Journal of Molecular Sciences, 2012, 13, 15086-15106.	4.1	69
3	Enhanced lindane removal from soil slurry by immobilized Streptomyces consortium. International Biodeterioration and Biodegradation, 2014, 93, 63-69.	3.9	52
4	The current approach to soil remediation: A review of physicochemical and biological technologies, and the potential of their strategic combination. Journal of Environmental Chemical Engineering, 2022, 10, 107141.	6.7	49
5	Effectiveness of the Zea mays-Streptomyces association for the phytoremediation of petroleum hydrocarbons impacted soils. Ecotoxicology and Environmental Safety, 2019, 184, 109591.	6.0	48
6	Heavy metal resistant strains are widespread along Streptomyces phylogeny. Molecular Phylogenetics and Evolution, 2013, 66, 1083-1088.	2.7	45
7	Multi-resistant plant growth-promoting actinobacteria and plant root exudates influence Cr(VI) and lindane dissipation. Chemosphere, 2019, 222, 679-687.	8.2	43
8	Evaluation of the effectiveness of a bioremediation process in experimental soils polluted with chromium and lindane. Ecotoxicology and Environmental Safety, 2019, 181, 255-263.	6.0	32
9	Fall Armyworm Strains (Lepidoptera: Noctuidae) in Argentina, Their Associate Host Plants and Response to Different Mortality Factors in Laboratory. Florida Entomologist, 2008, 91, 63-69.	0.5	21
10	Beneficial traits of root endophytes and rhizobacteria associated with plants growing in phytomanaged soils with mixed trace metal-polycyclic aromatic hydrocarbon contamination. Chemosphere, 2021, 277, 130272.	8.2	20
11	Whole genome sequence of the multi-resistant plant growth-promoting bacteria Streptomyces sp. Z38 with potential application in agroindustry and bio-nanotechnology. Genomics, 2020, 112, 4684-4689.	2.9	16
12	Enhanced biodegradation of hexachlorocyclohexane (HCH) isomers by Sphingobium sp. strain D4 in the presence of root exudates or in co-culture with HCH-mobilizing strains. Journal of Hazardous Materials, 2022, 433, 128764.	12.4	15
13	Cr(VI) and lindane removal by <i>Streptomyces</i> M7 is improved by maize root exudates. Journal of Basic Microbiology, 2017, 57, 1037-1044.	3.3	14
14	Production of a microbial emulsifier with biotechnological potential for environmental applications. Colloids and Surfaces B: Biointerfaces, 2019, 174, 459-466.	5.0	12
15	Insecticidal crystal proteins from native Bacillus thuringiensis: numerical analysis and biological activity against Spodoptera frugiperda. Biotechnology Letters, 2009, 31, 77-82.	2.2	10
16	Characterization of native Bacillus thuringiensis strains and selection of an isolate active against Spodoptera frugiperda and Peridroma saucia. Biotechnology Letters, 2009, 31, 1899-1903.	2.2	10
17	Chromium(VI) reduction in Streptomyces sp. M7 mediated by a novel Old Yellow Enzyme. Applied Microbiology and Biotechnology, 2019, 103, 5015-5022.	3.6	7
18	Characterization of biosynthesized silver nanoparticles from Streptomyces aqueous extract and evaluation of surface-capping proteins involved in the process. Nano Structures Nano Objects, 2021, 26, 100755.	3.5	7

#	Article	IF	CITATIONS
19	Assessment of the Streptomyces-plant system to mitigate the impact of Cr(VI) and lindane in experimental soils. Environmental Science and Pollution Research, 2021, 28, 51217-51231.	5.3	3
20	Biological characterization of two Bacillus thuringiensis strains toxic against Spodoptera frugiperda. World Journal of Microbiology and Biotechnology, 2011, 27, 2343-2349.	3.6	2
21	Nanoparticles for New Pharmaceuticals: Metabolites from Actinobacteria. Environmental Chemistry for A Sustainable World, 2020, , 195-213.	0.5	1