

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4479918/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Converting thermally activated delayed fluorescence into hybridized local and charge-transfer via an addition acceptor moiety. Organic Electronics, 2022, 100, 106365.	2.6	8
2	J-Aggregation Enhances the Electroluminescence Performance of a Sky-Blue Thermally Activated Delayed-Fluorescence Emitter in Nondoped Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2020, 12, 2717-2723.	8.0	52
3	Non-noble-metal-based organic emitters for OLED applications. Materials Science and Engineering Reports, 2020, 142, 100581.	31.8	55
4	Tri‣piral Donor for High Efficiency and Versatile Blue Thermally Activated Delayed Fluorescence Materials. Angewandte Chemie - International Edition, 2019, 58, 11301-11305.	13.8	198
5	Utilizing a Spiro TADF Moiety as a Functional Electron Donor in TADF Molecular Design toward Efficient "Multichannel―Reverse Intersystem Crossing. Advanced Functional Materials, 2019, 29, 1808088.	14.9	101
6	Cyanopyridine based bipolar host materials for phosphorescent light-emitting diodes with low efficiency roll-off: Importance of charge balance. Dyes and Pigments, 2018, 159, 230-237.	3.7	12
7	D–A–D-type orange-light emitting thermally activated delayed ï¬,uorescence (TADF) materials based on a fluorenone unit: simulation, photoluminescence and electroluminescence studies. Beilstein Journal of Organic Chemistry, 2018, 14, 672-681.	2.2	22
8	Dual n-type units including pyridine and diphenylphosphine oxide: effective design strategy of host materials for high-performance organic light-emitting diodes. Chemical Science, 2016, 7, 6706-6714.	7.4	50
9	1,2,4-Triazole-containing bipolar hosts for blue and green phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 7260-7268.	5.5	27
10	Novel Ir(ppy) ₃ Derivatives: Simple Structure Modification Toward Nearly 30% External Quantum Efficiency in Phosphorescent Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2016, 4, 864-870.	7.3	25
11	Cyanopyridine Based Bipolar Host Materials for Green Electrophosphorescence with Extremely Low Turn-On Voltages and High Power Efficiencies. ACS Applied Materials & Interfaces, 2016, 8, 21497-21504.	8.0	49
12	Simple Bipolar Host Materials for High-Efficiency Blue, Green, and White Phosphorescence OLEDs. ACS Applied Materials & Interfaces, 2016, 8, 22382-22391.	8.0	69
13	Comprehensive Studies on Excited-State Proton Transfer of a Series of 2-(2′-Hydroxyphenyl)benzothiazole Derivatives: Synthesis, Optical Properties, and Theoretical Calculations. Journal of Physical Chemistry C, 2015, 119, 4242-4251.	3.1	99
14	Bipolar host materials for high-efficiency blue phosphorescent and delayed-fluorescence OLEDs. Journal of Materials Chemistry C, 2015, 3, 12529-12538.	5.5	66
15	Universal Host Materials for High-Efficiency Phosphorescent and Delayed-Fluorescence OLEDs. ACS Applied Materials & Interfaces, 2015, 7, 26206-26216.	8.0	84
16	Organic Host Materials for Solutionâ€Processed Phosphorescent Organic Lightâ€Emitting Diodes. Israel Journal of Chemistry, 2014, 54, 867-884.	2.3	12
17	Solution-processible small-molecular host materials for high-performance phosphorescent organic light-emitting diodes. Dyes and Pigments, 2014, 102, 150-158.	3.7	15