Jia Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4479542/publications.pdf Version: 2024-02-01

LIA LIANC

#	Article	IF	CITATIONS
1	Strong and flaw-insensitive two-dimensional covalent organic frameworks. Matter, 2021, 4, 1017-1028.	5.0	23
2	A Molecularâ€Level Interface Design Enabled Highâ€Strength and Highâ€Toughness Carbon Nanotube Buckypaper. Macromolecular Materials and Engineering, 2021, 306, 2100244.	1.7	5
3	Recent progress on all-inorganic metal halide perovskite solar cells. Materials Today Nano, 2021, 16, 100143.	2.3	13
4	Perovskiteâ€Đerivative Valleytronics. Advanced Materials, 2020, 32, e2004111.	11.1	19
5	A Low-Cost and High-Efficiency Integrated Device toward Solar-Driven Water Splitting. ACS Nano, 2020, 14, 5426-5434.	7.3	36
6	Leadâ€Free Double Perovskite Cs ₂ SnX ₆ : Facile Solution Synthesis and Excellent Stability. Small, 2019, 15, e1901650.	5.2	56
7	Leadâ€Free Perovskites: Leadâ€Free Double Perovskite Cs ₂ SnX ₆ : Facile Solution Synthesis and Excellent Stability (Small 39/2019). Small, 2019, 15, 1970211.	5.2	2
8	Defectâ€Engineeringâ€Enabled Highâ€Efficiency Allâ€Inorganic Perovskite Solar Cells. Advanced Materials, 2019, 31, e1903448.	11.1	143
9	Enhancing Optical, Electronic, Crystalline, and Morphological Properties of Cesium Lead Halide by Mn Substitution forÂHigh tability Allâ€Inorganic Perovskite Solar Cells withÂCarbon Electrodes. Advanced Energy Materials, 2018, 8, 1800504.	10.2	272
10	Interface Engineering of Anchored Ultrathin TiO ₂ /MoS ₂ Heterolayers for Highly-Efficient Electrochemical Hydrogen Production. ACS Applied Materials & Interfaces, 2018, 10, 6084-6089.	4.0	47
11	Integrated perovskite solar capacitors with high energy conversion efficiency and fast photo-charging rate. Journal of Materials Chemistry A, 2018, 6, 2047-2052.	5.2	85
12	Highly efficient overall water splitting driven by all-inorganic perovskite solar cells and promoted by bifunctional bimetallic phosphide nanowire arrays. Journal of Materials Chemistry A, 2018, 6, 20076-20082.	5.2	51
13	An all-inorganic perovskite solar capacitor for efficient and stable spontaneous photocharging. Nano Energy, 2018, 52, 239-245.	8.2	100
14	Recycling PM2.5 carbon nanoparticles generated by diesel vehicles for supercapacitors and oxygen reduction reaction. Nano Energy, 2017, 33, 229-237.	8.2	55
15	Metallic and polar Co 9 S 8 inlaid carbon hollow nanopolyhedra as efficient polysulfide mediator for lithiumâ^'sulfur batteries. Nano Energy, 2017, 38, 239-248.	8.2	314
16	Versatile Electronic Skins for Motion Detection of Joints Enabled by Aligned Fewâ€Walled Carbon Nanotubes in Flexible Polymer Composites. Advanced Functional Materials, 2017, 27, 1606604.	7.8	119
17	Controlled growth and photoconductive properties of hexagonal SnS2 nanoflakes with mesa-shaped atomic steps. Nano Research, 2017, 10, 1434-1447.	5.8	51
18	Highly Efficient Retention of Polysulfides in "Sea Urchin―Like Carbon Nanotube/Nanopolyhedra Superstructures as Cathode Material for Ultralong-Life Lithium–Sulfur Batteries. Nano Letters, 2017, 17, 437-444.	4.5	223

Jia Liang

#	Article	IF	CITATIONS
19	Pine needle-derived microporous nitrogen-doped carbon frameworks exhibit high performances in electrocatalytic hydrogen evolution reaction and supercapacitors. Nanoscale, 2017, 9, 1237-1243.	2.8	154
20	Allâ€Inorganic Halide Perovskites for Optoelectronics: Progress and Prospects (Solar RRL 10â^•2017). Solar Rrl, 2017, 1, 1770138.	3.1	11
21	Allâ€Inorganic Halide Perovskites for Optoelectronics: Progress and Prospects. Solar Rrl, 2017, 1, 1700086.	3.1	167
22	CsPb _{0.9} Sn _{0.1} IBr ₂ Based All-Inorganic Perovskite Solar Cells with Exceptional Efficiency and Stability. Journal of the American Chemical Society, 2017, 139, 14009-14012.	6.6	447
23	Solution synthesis and phase control of inorganic perovskites for high-performance optoelectronic devices. Nanoscale, 2017, 9, 11841-11845.	2.8	75
24	High-Performance Li–Se Batteries Enabled by Selenium Storage in Bottom-Up Synthesized Nitrogen-Doped Carbon Scaffolds. ACS Applied Materials & Interfaces, 2017, 9, 25232-25238.	4.0	50
25	MoS ₂ â€Based Allâ€Purpose Fibrous Electrode and Selfâ€Powering Energy Fiber for Efficient Energy Harvesting and Storage. Advanced Energy Materials, 2017, 7, 1601208.	10.2	139
26	Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy, 2016, 24, 139-147.	8.2	282
27	Pitaya-like microspheres derived from Prussian blue analogues as ultralong-life anodes for lithium storage. Journal of Materials Chemistry A, 2016, 4, 15041-15048.	5.2	35
28	Hierarchical Ternary Carbide Nanoparticle/Carbon Nanotube-Inserted N-Doped Carbon Concave-Polyhedrons for Efficient Lithium and Sodium Storage. ACS Applied Materials & Interfaces, 2016, 8, 26834-26841.	4.0	52
29	Hierarchical porous nitrogen-rich carbon nanospheres with high and durable capabilities for lithium and sodium storage. Nanoscale, 2016, 8, 17911-17918.	2.8	57
30	One-step fabrication of large-area ultrathin MoS ₂ nanofilms with high catalytic activity for photovoltaic devices. Nanoscale, 2016, 8, 16017-16025.	2.8	51
31	All-Inorganic Perovskite Solar Cells. Journal of the American Chemical Society, 2016, 138, 15829-15832.	6.6	899
32	In Situ Thermal Synthesis of Inlaid Ultrathin MoS ₂ /Graphene Nanosheets as Electrocatalysts for the Hydrogen Evolution Reaction. Chemistry of Materials, 2016, 28, 5733-5742.	3.2	166
33	Multiworking Electrode Flexible Fiber-Type Quantum Dot-Sensitized Solar Cells. IEEE Journal of Photovoltaics, 2016, 6, 952-959.	1.5	8
34	Towards methyl orange degradation by direct sunlight using coupled TiO2 nanoparticles and carbonized cotton T-shirt. Applied Materials Today, 2016, 3, 57-62.	2.3	12
35	Heterostructures of MoS2 nanofilms on TiO2 nanorods used as field emitters. Vacuum, 2016, 123, 17-22.	1.6	8
36	TiO2 hierarchical nanostructures: Hydrothermal fabrication and application in dye-sensitized solar cells. AIP Advances, 2015, 5, .	0.6	22

Jia Liang

#	Article	IF	CITATIONS
37	High efficiency flexible fiber-type dye-sensitized solar cells with multi-working electrodes. Nano Energy, 2015, 12, 501-509.	8.2	54
38	Metal diselenide nanoparticles as highly active and stable electrocatalysts for the hydrogen evolution reaction. Nanoscale, 2015, 7, 14813-14816.	2.8	103
39	Fabrication of ZnO nanostructures sensitized with CdS quantum dots for photovoltaic application using a convenient solution method. Materials Research Bulletin, 2015, 61, 492-498.	2.7	11
40	Ultrathin ZnO membranes a few atomic layers in thickness. Science China Technological Sciences, 2014, 57, 315-321.	2.0	0
41	Post-treatment on dye-sensitized solar cells with TiCl4 and Nb2O5. RSC Advances, 2014, 4, 6746.	1.7	13
42	Transparent, 3-dimensional light-collected, and flexible fiber-type dye-sensitized solar cells based on highly ordered hierarchical anatase TiO2 nanorod arrays. Journal of Power Sources, 2014, 272, 719-729.	4.0	14
43	Highly ordered hierarchical TiO ₂ nanotube arrays for flexible fiber-type dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 19841-19847.	5.2	31
44	Room-temperature fabrication of dual-functional hierarchical TiO2 spheres for dye-sensitized solar cells. RSC Advances, 2014, 4, 12649.	1.7	11
45	Completely Different Performances of the Dye-Sensitized Solar Cells Based on Potassium-Tungsten-Oxide and -Bronze Nanobranches. Science of Advanced Materials, 2014, 6, 141-150.	0.1	1
46	Flexible fiber-type dye-sensitized solar cells based on highly ordered TiO2 nanotube arrays. Electrochemistry Communications, 2013, 37, 80-83.	2.3	28
47	Hydrothermally formed functional niobium oxide doped tungsten nanorods. Nanotechnology, 2013, 24, 495501.	1.3	15
48	Hydrothermal Fabrication and Ferroelectric Behavior of Lithium-Doped Zinc Oxide Nanoflakes. Science of Advanced Materials, 2013, 5, 1139-1149.	0.1	5
49	TiO ₂ Nanotip Arrays: Anodic Fabrication and Field-Emission Properties. ACS Applied Materials & Interfaces, 2012, 4, 6053-6061.	4.0	44