Didier Floner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4479341/publications.pdf Version: 2024-02-01

DIDIED FLONED

#	Article	IF	CITATIONS
1	Behaviour of 3,4â€Dihydroxyâ€9,10â€Anthraquinoneâ€2â€Sulfonic Acid in Alkaline Medium: Towards a Longâ€Cycling Aqueous Organic Redox Flow Battery. ChemElectroChem, 2021, 8, 2526-2533.	3.4	13
2	Addition of weak acids in electrolytes to prevent osmosis in aqueous organic redox flow batteries. Electrochemistry Communications, 2021, 132, 107148.	4.7	5
3	Efficient Dechlorination of α-Halocarbonyl and α-Haloallyl Pollutants by Electroreduction on Bismuth. Environmental Science & Technology, 2020, 54, 559-567.	10.0	12
4	Ni-coated graphite felt modified with Ag nanoparticles: A new electrode material for electro-reductive dechlorination. Journal of Electroanalytical Chemistry, 2019, 849, 113357.	3.8	19
5	New porous bismuth electrode material with high surface area. Journal of Electroanalytical Chemistry, 2019, 839, 32-38.	3.8	10
6	Highly soluble Fe(III)-triethanolamine complex relevant for redox flow batteries. Electrochimica Acta, 2019, 301, 472-477.	5.2	32
7	Reductive dehalogenation of a chloroacetanilide herbicide in a flow electrochemical cell fitted with Agâ€modified Ni foams. Journal of Chemical Technology and Biotechnology, 2018, 93, 1572-1578.	3.2	18
8	A General Approach Based on Sampled urrent Voltammetry for Minimizing Electrode Fouling in Electroanalytical Detection. ChemElectroChem, 2018, 5, 144-152.	3.4	8
9	Preparation of Silverâ€Modified Nickel Foams by Galvanic Displacement and Their Use as Cathodes for the Reductive Dechlorination of Herbicides. ChemElectroChem, 2016, 3, 2084-2092.	3.4	27
10	Dark fermentative hydrogen production by anaerobic sludge growing on glucose and ammonium resulting from nitrate electroreduction. International Journal of Hydrogen Energy, 2016, 41, 5445-5455.	7.1	39
11	Energetic valorization of ammonium resulting from nitrate electrochemical reduction—Feasibility of biohydrogen production. Biochemical Engineering Journal, 2015, 94, 145-152.	3.6	5
12	Direct electrochemical oxidation of a pesticide, 2,4-dichlorophenoxyacetic acid, at the surface of a graphite felt electrode: Biodegradability improvement. Comptes Rendus Chimie, 2015, 18, 32-38.	0.5	25
13	Biohydrogen production by coupling an electrochemical system with a biological treatment. , 2014, , .		0
14	Selective and quantitative nitrate electroreduction to ammonium using a porous copper electrode in an electrochemical flow cell. Journal of Electroanalytical Chemistry, 2014, 727, 148-153.	3.8	55
15	Sampled voltammetry on an electrode array for the renewal of the electrode surface and the analytical solution during the analysis. Journal of Electroanalytical Chemistry, 2013, 689, 83-87.	3.8	2
16	Homogeneous coating of graphite felt by nickel electrodeposition to achieve light nickel felts with high surface area. Electrochemistry Communications, 2007, 9, 2271-2275.	4.7	21