Fernando P Dominici

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4478995/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Increased insulin sensitivity and upregulation of insulin receptor, insulin receptor substrate (IRS)-1 and IRS-2 in liver of Ames dwarf mice. Journal of Endocrinology, 2002, 173, 81-94.	1.2	175
2	Insulin-like growth factor 1 (IGF-1) and aging: controversies and new insights. Biogerontology, 2003, 4, 1-8.	2.0	153
3	Chronic infusion of angiotensin-(1–7) improves insulin resistance and hypertension induced by a high-fructose diet in rats. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E262-E271.	1.8	150
4	Influence of the crosstalk between growth hormone and insulin signalling on the modulation of insulin sensitivity. Growth Hormone and IGF Research, 2005, 15, 324-336.	0.5	134
5	Disruption of Growth Hormone Receptor Prevents Calorie Restriction from Improving Insulin Action and Longevity. PLoS ONE, 2009, 4, e4567.	1.1	116
6	Compensatory alterations of insulin signal transduction in liver of growth hormone receptor knockout mice. Journal of Endocrinology, 2000, 166, 579-590.	1.2	110
7	Angiotensin-(1–7) stimulates the phosphorylation of JAK2, IRS-1 and Akt in rat heart in vivo: role of the AT1 and Mas receptors. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H1154-H1163.	1.5	104
8	Growth Hormone-Induced Alterations in the Insulin-Signaling System. Experimental Biology and Medicine, 2002, 227, 149-157.	1.1	84
9	Loss of sensitivity to insulin at early events of the insulin signaling pathway in the liver of growth hormone-transgenic mice. Journal of Endocrinology, 1999, 161, 383-392.	1.2	74
10	Oral administration of angiotensin-(1–7) ameliorates type 2 diabetes in rats. Journal of Molecular Medicine, 2014, 92, 255-265.	1.7	74
11	Angiotensin-(1–7) attenuates diabetic nephropathy in Zucker diabetic fatty rats. American Journal of Physiology - Renal Physiology, 2012, 302, F1606-F1615.	1.3	71
12	Angiotensin-(1–7) improves cardiac remodeling and inhibits growth-promoting pathways in the heart of fructose-fed rats. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1003-H1013.	1.5	64
13	Nebivolol: impact on cardiac and endothelial function and clinical utility. Vascular Health and Risk Management, 2012, 8, 151.	1.0	63
14	Angiotensin-(1–7) reduces proteinuria and diminishes structural damage in renal tissue of stroke-prone spontaneously hypertensive rats. American Journal of Physiology - Renal Physiology, 2011, 300, F272-F282.	1.3	62
15	The Mas receptor mediates modulation of insulin signaling by angiotensin-(1–7). Regulatory Peptides, 2012, 177, 1-11.	1.9	60
16	Angiotensinâ€(1–7) through AT ₂ receptors mediates tyrosine hydroxylase degradation via the ubiquitin–proteasome pathway. Journal of Neurochemistry, 2009, 109, 326-335.	2.1	58
17	Angiotensin-(1-7) stimulates the phosphorylation of Akt in rat extracardiac tissues in vivo via receptor Mas. Regulatory Peptides, 2010, 161, 1-7.	1.9	56
18	Novel roles of galectinâ€1 in hepatocellular carcinoma cell adhesion, polarization, and <i>in vivo</i> tumor growth. Hepatology, 2011, 53, 2097-2106.	3.6	49

Fernando P Dominici

#	Article	IF	CITATIONS
19	Modulation of the action of insulin by angiotensin-(1–7). Clinical Science, 2014, 126, 613-630.	1.8	46
20	TANK-binding kinase 1 mediates phosphorylation of insulin receptor at serine residue 994: a potential link between inflammation and insulin resistance. Journal of Endocrinology, 2009, 201, 185-197.	1.2	42
21	Long-term treatment with an angiotensin II receptor blocker decreases adipocyte size and improves insulin signaling in obese Zucker rats. Journal of Hypertension, 2009, 27, 2409-2420.	0.3	41
22	Irbesartan restores the in-vivo insulin signaling pathway leading to Akt activation in obese Zucker rats. Journal of Hypertension, 2006, 24, 1607-1617.	0.3	39
23	Antifibrotic Effects of Pioglitazone at Low Doses on the Diabetic Rat Kidney Are Associated with the Improvement of Markers of Cell Turnover, Tubular and Endothelial Integrity, and Angiogenesis. Kidney and Blood Pressure Research, 2011, 34, 20-33.	0.9	37
24	Cardiovascular protective effects of nebivolol in Zucker diabetic fatty rats. Journal of Hypertension, 2010, 28, 1007-1019.	0.3	36
25	Role of hyperinsulinemia on hepatic insulin receptor concentration and autophosphorylation in the presence of high growth hormone levels in transgenic mice overexpressing growth hormone gene. Journal of Endocrinology, 1998, 159, 15-25.	1.2	35
26	Effects of Long-Term Caloric Restriction on Early Steps of the Insulin-Signaling System in Mouse Skeletal Muscle. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2005, 60, 28-34.	1.7	35
27	Angiotensin-(1-7) has a dual role on growth-promoting signalling pathways in rat heart in vivo by stimulating STAT3 and STAT5a/b phosphorylation and inhibiting angiotensin II-stimulated ERK1/2 and Rho kinase activity. Experimental Physiology, 2008, 93, 570-578.	0.9	35
28	The dwarf mutation decreases high dose insulin responses in skeletal muscle, the opposite of effects in liver. Mechanisms of Ageing and Development, 2003, 124, 819-827.	2.2	33
29	Alterations in the early steps of the insulin-signaling system in skeletal muscle of GH-transgenic mice. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E447-E454.	1.8	32
30	Effects of long-term caloric restriction on glucose homeostasis and on the first steps of the insulin signaling system in skeletal muscle of normal and Ames dwarf (Prop1df/Prop1df) mice. Experimental Gerontology, 2005, 40, 27-35.	1.2	31
31	Insulin Signaling Cascade in the Hearts of Long-Lived Growth Hormone Receptor Knockout Mice: Effects of Calorie Restriction. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 788-797.	1.7	27
32	Vagal stimulation mimics preconditioning and postconditioning of ischemic myocardium in mice by activating different protection mechanisms. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H1289-H1297.	1.5	25
33	CH modulates hepatic epidermal growth factor signaling in the mouse. Journal of Endocrinology, 2010, 204, 299-309.	1.2	24
34	Long-term treatment with nebivolol attenuates renal damage in Zucker diabetic fatty rats. Journal of Hypertension, 2011, 29, 1613-1623.	0.3	24
35	Markers of oxidative/nitrosative stress and inflammation in lung tissue of rats exposed to different intravenous iron compounds. Drug Design, Development and Therapy, 2017, Volume 11, 2251-2263.	2.0	24
36	Intravenous iron sucrose reverses anemia-induced cardiac remodeling, prevents myocardial fibrosis, and improves cardiac function by attenuating oxidative/nitrosative stress and inflammation. International Journal of Cardiology, 2016, 212, 84-91.	0.8	22

#	Article	IF	CITATIONS
37	Dietary Fructose Increases the Sensitivity of Proximal Tubules to Angiotensin II in Rats Fed High-Salt Diets. Nutrients, 2018, 10, 1244.	1.7	20
38	Validation of commercial Mas receptor antibodies for utilization in Western Blotting, immunofluorescence and immunohistochemistry studies. PLoS ONE, 2017, 12, e0183278.	1.1	19
39	Renal Inflammation Induces Salt Sensitivity in Male db/db Mice through Dysregulation of ENaC. Journal of the American Society of Nephrology: JASN, 2021, 32, 1131-1149.	3.0	19
40	Increased in vivo phosphorylation of insulin receptor at serine 994 in the liver of obese insulin-resistant Zucker rats. Journal of Endocrinology, 2004, 182, 433-444.	1.2	18
41	Prolonged exposure to GH impairs insulin signaling in the heart. Journal of Molecular Endocrinology, 2011, 47, 167-177.	1.1	18
42	Chronic administration of the angiotensin type 2 receptor agonist C21 improves insulin sensitivity in C57BL/6 mice Physiological Reports, 2018, 6, e13824.	0.7	18
43	Short-term Caloric Restriction Does Not Modify theIn VivoInsulin Signaling Pathway Leading to Akt Activation in Skeletal Muscle of Ames Dwarf (Prop1df/Prop1df) Mice. Hormone and Metabolic Research, 2005, 37, 672-679.	0.7	16
44	Upregulation of the angiotensin-converting enzyme 2/angiotensin-(1–7)/Mas receptor axis in the heart and the kidney of growth hormone receptor knock-out mice. Growth Hormone and IGF Research, 2012, 22, 224-233.	0.5	16
45	Downregulation of the ACE2/Ang-(1–7)/Mas axis in transgenic mice overexpressing GH. Journal of Endocrinology, 2014, 221, 215-227.	1.2	16
46	Chronic blockade of the AT2 receptor with PD123319 impairs insulin signaling in C57BL/6 mice. Peptides, 2017, 88, 37-45.	1.2	16
47	Dietary Fructose Enhances the Ability of Low Concentrations of Angiotensin II to Stimulate Proximal Tubule Na+ Reabsorption. Nutrients, 2017, 9, 885.	1.7	16
48	Loss of myocardial protection against myocardial infarction in middle-aged transgenic mice overexpressing cardiac thioredoxin-1. Oncotarget, 2016, 7, 11889-11898.	0.8	15
49	Angiotensin II stimulates superoxide production by nitric oxide synthase in thick ascending limbs. Physiological Reports, 2016, 4, e12697.	0.7	13
50	Activation of AT ₂ receptors prevents diabetic complications in female db/db mice by NOâ€mediated mechanisms. British Journal of Pharmacology, 2020, 177, 4766-4781.	2.7	10
51	Ames dwarf (Prop1df/Prop1df) mice display increased sensitivity of the major GH-signaling pathways in liver and skeletal muscle. Growth Hormone and IGF Research, 2010, 20, 118-126.	0.5	9
52	lschemic Postconditioning Reduces Infarct Size Through the α1-Adrenergic Receptor Pathway. Journal of Cardiovascular Pharmacology, 2014, 63, 504-511.	0.8	9
53	Nitrosative Stress and Apoptosis by Intravenous Ferumoxytol, Iron Isomaltoside 1000, Iron Dextran, Iron Sucrose, and Ferric Carboxymaltose in a Nonclinical Model. Drug Research, 2015, 65, 354-360.	0.7	9
54	Participation of Cαi-Adenylate Cyclase and ERK1/2 in Mas Receptor Signaling Pathways. Frontiers in Pharmacology, 2019, 10, 146.	1.6	9

Fernando P Dominici

#	Article	IF	CITATIONS
55	Increased sensitivity to GH in liver of Ames dwarf (Prop1df/Prop1df) mice related to diminished CIS abundance. Journal of Endocrinology, 2005, 187, 387-397.	1.2	8
56	Angiotensinâ€{1–7) has a dual role on growthâ€promoting signalling pathways in rat heart <i>in vivo</i> by stimulating STAT3 and STAT5a/b phosphorylation and inhibiting angiotensin Ilâ€stimulated ERK1/2 and Rho kinase activity. Experimental Physiology, 2008, 93, 570-578.	0.9	8
57	Centrally administered insulin potentiates the pressor response to angiotensin II. Regulatory Peptides, 2010, 163, 57-61.	1.9	8
58	Ferric Carboxymaltose-Mediated Attenuation of Doxorubicin-Induced Cardiotoxicity in an Iron Deficiency Rat Model. Chemotherapy Research and Practice, 2014, 2014, 1-9.	1.6	8
59	Mice lacking angiotensin type 2 receptor exhibit a sex-specific attenuation of insulin sensitivity. Molecular and Cellular Endocrinology, 2019, 498, 110587.	1.6	8
60	Growth Hormone Modulation of Hepatic Epidermal Growth Factor Receptor Signaling. Trends in Endocrinology and Metabolism, 2021, 32, 403-414.	3.1	8
61	Concentration of free growth hormone-binding protein in the serum of mice is not regulated by growth hormone. Journal of Endocrinology, 1997, 153, 319-325.	1.2	7
62	The Role of Growth Hormone Signaling in the Control of Ageing. NeuroImmune Biology, 2004, 4, 123-137.	0.2	7
63	Specific interactions of growth hormone (GH) with CH-receptors and CH-binding proteins in vivo in genetically CH-deficient Ames dwarf mice. Growth Hormone and IGF Research, 1998, 8, 389-396.	0.5	5
64	Central insulin–angiotensin II interaction in blood pressure regulation in fructose overloaded rats. Regulatory Peptides, 2013, 185, 37-43.	1.9	5
65	Glucose-mannose-binding Lectins Isolated from Brazilian Beans Stimulate the Autophosphorylation of the Insulin Receptorin vitro. Hormone and Metabolic Research, 2003, 35, 125-127.	0.7	4
66	Metabolic Role of Angiotensin-(1-7)/Mas Axis. , 2015, , 249-254.		0
67	Insulin signaling in the heart is directly and early impaired by growth hormone. Journal of Molecular Endocrinology, 2022, , .	1.1	Ο