MaÅ,gorzata Å»endzian-Piotrowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4478520/publications.pdf

Version: 2024-02-01

MaÅ,gorzata

#	Article	IF	CITATIONS
1	Relationship Between Insulin Sensitivity and Sphingomyelin Signaling Pathway in Human Skeletal Muscle. Diabetes, 2004, 53, 1215-1221.	0.6	219
2	Inhibition of ceramide <i>de novo</i> synthesis reduces liver lipid accumulation in rats with nonalcoholic fatty liver disease. Liver International, 2014, 34, 1074-1083.	3.9	109
3	Antibacterial activity of the human host defence peptide LL-37 and selected synthetic cationic lipids against bacteria associated with oral and upper respiratory tract infections. Journal of Antimicrobial Chemotherapy, 2013, 68, 610-618.	3.0	66
4	Intrathecal increase of sphingosine 1-phosphate at early stage multiple sclerosis. Neuroscience Letters, 2010, 477, 149-152.	2.1	65
5	High fat diet induces ceramide and sphingomyelin formation in rat's liver nuclei. Molecular and Cellular Biochemistry, 2010, 340, 125-131.	3.1	61
6	Myocardial infarction differentially alters sphingolipid levels in plasma, erythrocytes and platelets of the rat. Basic Research in Cardiology, 2012, 107, 294.	5.9	57
7	Fatty acid transporters involved in the palmitate and oleate induced insulin resistance in primary rat hepatocytes. Acta Physiologica, 2013, 207, 346-357.	3.8	57
8	Oxidative Modification in the Salivary Glands of High Fat-Diet Induced Insulin Resistant Rats. Frontiers in Physiology, 2017, 8, 20.	2.8	56
9	Plasma gelsolin modulates cellular response to sphingosine 1-phosphate. American Journal of Physiology - Cell Physiology, 2010, 299, C1516-C1523.	4.6	48
10	Oxidative Damage to the Salivary Glands of Rats with Streptozotocin-Induced Diabetes-Temporal Study: Oxidative Stress and Diabetic Salivary Glands. Journal of Diabetes Research, 2016, 2016, 1-13.	2.3	48
11	Impact of morbid obesity and bariatric surgery on antioxidant/oxidant balance of the unstimulated and stimulated human saliva. Journal of Oral Pathology and Medicine, 2016, 45, 455-464.	2.7	48
12	Effect of N-Acetylcysteine on Antioxidant Defense, Oxidative Modification, and Salivary Gland Function in a Rat Model of Insulin Resistance. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-11.	4.0	45
13	Eight-Week Consumption of High-Sucrose Diet Has a Pro-Oxidant Effect and Alters the Function of the Salivary Glands of Rats. Nutrients, 2018, 10, 1530.	4.1	42
14	Chronic high-protein diet induces oxidative stress and alters the salivary gland function in rats. Archives of Oral Biology, 2017, 84, 6-12.	1.8	40
15	The Impact of High-Fat Diet on Mitochondrial Function, Free Radical Production, and Nitrosative Stress in the Salivary Glands of Wistar Rats. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-15.	4.0	37
16	Inhibition of Ceramide <i>De Novo</i> Synthesis Ameliorates Diet Induced Skeletal Muscles Insulin Resistance. Journal of Diabetes Research, 2015, 2015, 1-9.	2.3	36
17	Salivary lipids: A review. Advances in Clinical and Experimental Medicine, 2017, 26, 1021-1029.	1.4	35
18	Effect of Streptozotocin-diabetes on the Functioning of the Sphingomyelin-signalling Pathway in Skeletal Muscles of the Rat. Hormone and Metabolic Research, 2004, 36, 14-21.	1.5	32

MAÅ,GORZATA

#	Article	IF	CITATIONS
19	Metabolism, Physiological Role, and Clinical Implications of Sphingolipids in Gastrointestinal Tract. BioMed Research International, 2013, 2013, 1-10.	1.9	32
20	Antioxidant profile of salivary glands in high fat dietâ€ i nduced insulin resistance rats. Oral Diseases, 2014, 20, 560-566.	3.0	32
21	High Protein Diet Induces Oxidative Stress in Rat Cerebral Cortex and Hypothalamus. International Journal of Molecular Sciences, 2019, 20, 1547.	4.1	32
22	Inhibition of Ceramide <i>De Novo</i> Synthesis with Myriocin Affects Lipid Metabolism in the Liver of Rats with Streptozotocin-Induced Type 1 Diabetes. BioMed Research International, 2014, 2014, 1-10.	1.9	29
23	Sphingosine-1-Phosphate Metabolism and Its Role in the Development of Inflammatory Bowel Disease. International Journal of Molecular Sciences, 2017, 18, 741.	4.1	29
24	Not only accumulation, but also saturation status of intramuscular lipids is significantly affected by PPARÎ ³ activation. Acta Physiologica, 2012, 205, 145-158.	3.8	27
25	Insulin Resistance and Obesity Affect Lipid Profile in the Salivary Glands. Journal of Diabetes Research, 2016, 2016, 1-9.	2.3	26
26	Antioxidant Defense, Oxidative Modification, and Salivary Gland Function in an Early Phase of Cerulein Pancreatitis. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-14.	4.0	26
27	Effect of endurance training on the phospholipid content of skeletal muscles in the rat. European Journal of Applied Physiology, 1999, 79, 421-425.	2.5	25
28	Ceramide profiles in the brain of rats with diabetes induced by streptozotocin. FEBS Journal, 2012, 279, 1943-1952.	4.7	24
29	Myocardial Infarction Changes Sphingolipid Metabolism in the Uninfarcted Ventricular Wall of the Rat. Lipids, 2012, 47, 847-853.	1.7	22
30	The Role of PGC-1α in the Development of Insulin Resistance in Skeletal Muscle - Revisited. Cellular Physiology and Biochemistry, 2015, 37, 2288-2296.	1.6	22
31	A New Insight into Meloxicam: Assessment of Antioxidant and Anti-Glycating Activity in In Vitro Studies. Pharmaceuticals, 2020, 13, 240.	3.8	21
32	The Effect of N-Acetylcysteine on Respiratory Enzymes, ADP/ATP Ratio, Glutathione Metabolism, and Nitrosative Stress in the Salivary Gland Mitochondria of Insulin Resistant Rats. Nutrients, 2020, 12, 458.	4.1	21
33	Challenging of AS160/TBC1D4 Alters Intracellular Lipid milieu in L6 Myotubes Incubated With Palmitate. Journal of Cellular Physiology, 2017, 232, 2373-2386.	4.1	20
34	Bariatric Surgery Normalizes Protein Glycoxidation and Nitrosative Stress in Morbidly Obese Patients. Antioxidants, 2020, 9, 1087.	5.1	20
35	Unexpected profile of sphingolipid contents in blood and bone marrow plasma collected from patients diagnosed with acute myeloid leukemia. Lipids in Health and Disease, 2017, 16, 235.	3.0	19
36	Impact of Weight Loss on the Total Antioxidant/Oxidant Potential in Patients with Morbid Obesity—A Longitudinal Study. Antioxidants, 2020, 9, 376.	5.1	19

MaÅ,GORZATA

#	Article	IF	CITATIONS
37	Increased levels of sphingosine-1-phosphate in cerebrospinal fluid of patients diagnosed with tick-borne encephalitis. Journal of Neuroinflammation, 2014, 11, 193.	7.2	18
38	The influence of physical exercise on the generation of TGF-β1, PDGF-AA, and VEGF-A in adipose tissue. European Journal of Applied Physiology, 2011, 111, 875-881.	2.5	16
39	Partial hepatectomy activates production of the pro-mitotic intermediates of the sphingomyelin signal transduction pathway in the rat liver. Prostaglandins and Other Lipid Mediators, 2007, 83, 277-284.	1.9	15
40	Activation of PPARα by bezafibrate negatively affects de novo synthesis of sphingolipids in regenerating rat liver. Prostaglandins and Other Lipid Mediators, 2010, 93, 120-125.	1.9	15
41	Lack of pronounced changes in the expression of fatty acid handling proteins in adipose tissue and plasmaAof morbidly obese humans. Nutrition and Diabetes, 2018, 8, 3.	3.2	15
42	Sphingolipid metabolism in colorectal adenomas varies depending on histological architecture of polyps and grade of nuclear dysplasia. Lipids, 2015, 50, 349-358.	1.7	14
43	Myriocin treatment affects lipid metabolism in skeletal muscles of rats with streptozotocin-induced type 1 diabetes. Advances in Medical Sciences, 2017, 62, 65-73.	2.1	14
44	Antioxidant Barrier and Oxidative Damage to Proteins, Lipids, and DNA/RNA in Adrenal Tumor Patients. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-19.	4.0	14
45	Association of Tumour Microenvironment with Protein Glycooxidation, DNA Damage, and Nitrosative Stress in Colorectal Cancer. Cancer Management and Research, 2021, Volume 13, 6329-6348.	1.9	14
46	Concentration and Composition of Free Ceramides in Human Plasma. Hormone and Metabolic Research, 2002, 34, 466-468.	1.5	13
47	The Effects of AS160 Modulation on Fatty Acid Transporters Expression and Lipid Profile in L6 Myotubes. Cellular Physiology and Biochemistry, 2016, 38, 267-282.	1.6	13
48	Cerulein-Induced Acute Pancreatitis Affects Sphingomyelin Signaling Pathway in Rats. Pancreas, 2018, 47, 898-903.	1.1	13
49	Sphingolipid profiles are altered in prefrontal cortex of rats under acute hyperglycemia. Neuroscience, 2014, 256, 282-291.	2.3	12
50	Hyperthyroidism Evokes Myocardial Ceramide Accumulation. Cellular Physiology and Biochemistry, 2015, 35, 755-766.	1.6	12
51	Plasma Sphingolipids in Acute Pancreatitis. International Journal of Molecular Sciences, 2017, 18, 2606.	4.1	12
52	Pleiotropic Properties of Valsartan: Do They Result from the Antiglycooxidant Activity? Literature Review and In Vitro Study. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-20.	4.0	12
53	The effect of high-fat diet on the sphingolipid pathway of signal transduction in regenerating rat liver. Prostaglandins and Other Lipid Mediators, 2010, 93, 75-83.	1.9	11
54	Exercise Differentially Regulates Renalase Expression in Skeletal Muscle and Kidney. Tohoku Journal of Experimental Medicine, 2013, 231, 321-329.	1.2	11

MaÅ,GORZATA

#	Article	IF	CITATIONS
55	Phloroglucinol prevents albumin glycation as well as diminishes ROS production, glycooxidative damage, nitrosative stress and inflammation in hepatocytes treated with high glucose. Biomedicine and Pharmacotherapy, 2021, 142, 111958.	5.6	10
56	Sphingolipids metabolism in the salivary glands of rats with obesity and streptozotocin induced diabetes. Journal of Cellular Physiology, 2017, 232, 2766-2775.	4.1	9
57	A Pilot Study Evaluating the Prevalence of Cervical Spine Dysfunction Among Students of Dentistry at the Medical University. Frontiers in Neurology, 2020, 11, 200.	2.4	9
58	α-Lipoic Acid Strengthens the Antioxidant Barrier and Reduces Oxidative, Nitrosative, and Glycative Damage, as well as Inhibits Inflammation and Apoptosis in the Hypothalamus but Not in the Cerebral Cortex of Insulin-Resistant Rats. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-21.	4.0	9
59	Diabetes Affects Phospholipid Content in the Nuclei of the Rat Liver. Hormone and Metabolic Research, 2000, 32, 386-389.	1.5	7
60	Fiber Specific Changes in Sphingolipid Metabolism in Skeletal Muscles of Hyperthyroid Rats. Lipids, 2013, 48, 697-704.	1.7	7
61	Effect of streptozotocin-induced diabetes on lipids metabolism in the salivary glands. Prostaglandins and Other Lipid Mediators, 2016, 126, 9-15.	1.9	7
62	NAC Supplementation of Hyperglycemic Rats Prevents the Development of Insulin Resistance and Improves Antioxidant Status but Only Alleviates General and Salivary Gland Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-15.	4.0	7
63	Effect of Acute Streptozotocin Diabetes on Fatty Acid Content and Composition in Different Lipid Fractions of Rat Skeletal Muscle. Hormone and Metabolic Research, 1999, 31, 252-256.	1.5	6
64	Bezafibrate decreases growth stimulatory action of the sphingomyelin signaling pathway in regenerating rat liver. Prostaglandins and Other Lipid Mediators, 2008, 85, 17-25.	1.9	6
65	High-fat, high-protein, and high-carbohydrate diets affect sphingolipid profile in pancreatic steatosis in Wistar rats. Nutrition, 2019, 60, 197-205.	2.4	6
66	Salivary Redox Biomarkers in Insulin Resistance: Preclinical Studies in an Animal Model. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-18.	4.0	6
67	Inequalities in breast cancer incidence and stage distribution between urban and rural female population in Świętokrzyskie Province, Poland. Annals of Agricultural and Environmental Medicine, 2019, 26, 159-164.	1.0	6
68	Metabolic adaptation to daily exercise of moderate intensity to exhaustion in the rat. European Journal of Applied Physiology and Occupational Physiology, 1993, 67, 77-82.	1.2	5
69	Training differentially regulates elastin level and proteolysis in skeletal and heart muscles and aorta in healthy rats. Biology Open, 2016, 5, 556-562.	1.2	5
70	Changes in the Diaphragm Lipid Content after Administration of Streptozotocin and High-Fat Diet Regime. Journal of Diabetes Research, 2017, 2017, 1-12.	2.3	5
71	Antioxidant and Antiglycation Properties of Seventeen Fruit Teas Obtained from One Manufacturer. Applied Sciences (Switzerland), 2020, 10, 5195.	2.5	5
72	CHANGE IN BLOOD GELSOLIN CONCENTRATION IN RESPONSE TO PHYSICAL EXERCISE. Biology of Sport, 2013, 30, 169-172.	3.2	5

MAÅ,GORZATA

#	Article	IF	CITATIONS
73	α-Lipoic Acid Reduces Ceramide Synthesis and Neuroinflammation in the Hypothalamus of Insulin-Resistant Rats, While in the Cerebral Cortex Diminishes the β-Amyloid Accumulation. Journal of Inflammation Research, 2022, Volume 15, 2295-2312.	3.5	5
74	The plasma borne free fatty acids rapidly enter the hepatocellular nuclei. Life Sciences, 1996, 59, 2209-2215.	4.3	4
75	Effect of increased uptake of plasma fatty acids by the liver on lipid metabolism in the hepatocellular nuclei. Prostaglandins Leukotrienes and Essential Fatty Acids, 1997, 57, 27-31.	2.2	4
76	Effect of sex and bezafibrate on incorporation of blood borne palmitate into lipids of rat liver nuclei. Molecular and Cellular Biochemistry, 2000, 214, 57-62.	3.1	4
77	Short-term effects of electrically induced tachycardia on antioxidant defenses in the normal and hypertrophied rat left ventricle. Journal of Physiological Sciences, 2009, 59, 199-206.	2.1	4
78	Effect of hyperglycaemia on muscle glycogen mobilization during muscle contractions in the rat. European Journal of Applied Physiology and Occupational Physiology, 1990, 61, 408-412.	1.2	3
79	Orally Given Nicotinamide Inhibits the Decreasing of Glutathione Content in the Pancreas of Streptozotocin Diabetic Rats. Hormone and Metabolic Research, 1996, 28, 35-36.	1.5	3
80	Effect of Sleeve Gastrectomy on Proprotein Convertase Subtilisin/Kexin Type 9 (Pcsk9) Content and Lipid Metabolism in the Blood Plasma and Liver of Obese Wistar Rats. Nutrients, 2019, 11, 2174.	4.1	3
81	Hypogelsolinemia and Decrease in Blood Plasma Sphingosine-1-Phosphate in Patients Diagnosed with Severe Acute Pancreatitis. Digestive Diseases and Sciences, 2021, , 1.	2.3	3
82	Analysis of trace element content in hair of autistic children. Journal of Elementology, 2017, , .	0.2	3
83	The influence of heavy physical effort on proteolytic adaptations in skeletal and heart muscle and aorta in rats. Annals of Agricultural and Environmental Medicine, 2018, 25, 605-609.	1.0	2
84	Evaluation of the Cervical Physiotherapeutic Treatment Needs, Work Ergonomics, and Necessity for Physical Activity Among Students of Dentistry at a Medical University. A Pilot Study. Frontiers in Psychology, 2020, 11, 559657.	2.1	2
85	Impact of Acute Pancreatic Injury on Sphingolipid Metabolism in the Salivary Glands. BioMed Research International, 2020, 2020, 1-7.	1.9	1
86	Rola i potencjaÅ, terapeutyczny sfingolipidowego szlaku sygnalizacyjnego w nowotworach hematologicznych. Hematologia, 2019, 9, 318-329.	0.0	1
87	Sphingomyelin profiling in patients with diabetes could be potentially useful as differential diagnostics biomarker: A pilot study. Advances in Medical Sciences, 2022, 67, 250-256.	2.1	1
88	Inequalities in breast-conserving surgery for female breast cancer in Świętokrzyskie Province, Poland. Polish Annals of Medicine, 0, , .	0.3	0
89	Increased TNF-Î \pm and TGF-Î 2 concentrations in rat liver after intense exercise. Polish Annals of Medicine, 0, , .	0.3	0