Robert Klement

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/447844/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoluminescence of rareâ€earth/transition metalâ€doped transparent/translucent polycrystalline Al ₂ O ₃ ceramics: A review. Journal of the American Ceramic Society, 2023, 106, 172-185.	3.8	5
2	ZnO-doped Y2O3 ceramic: A prospective Warm White Light Fluorescent Material. Journal of the European Ceramic Society, 2022, 42, 2478-2486.	5.7	4
3	Luminescent Dy3+ and Dy3+/Cr3+ doped transparent Al2O3 ceramics: Microstructure and optical properties. Journal of the European Ceramic Society, 2022, 42, 4343-4352.	5.7	4
4	Viscous flow spark plasma sintering of glass microspheres with YAG composition and high tendency to crystallization. Journal of the European Ceramic Society, 2021, 41, 1537-1542.	5.7	6
5	Er 3+ /Yb 3+ coâ€doped oxyfluoro tellurite glasses: Analysis of optical temperature sensing based on upâ€conversion luminescence. International Journal of Applied Glass Science, 2021, 12, 462-471.	2.0	8
6	Structure and fluorescence properties of Dyâ€doped alkalineâ€earth borophosphate glasses. International Journal of Applied Glass Science, 2021, 12, 472-484.	2.0	5
7	Glassâ€ceramic Ce ³⁺ â€doped YAGâ€Al ₂ O ₃ composites prepared by sintering of glass microspheres. International Journal of Applied Glass Science, 2021, 12, 497-508.	2.0	1
8	Photoluminescence and optical properties of Eu3+/Eu2+-doped transparent Al2O3 ceramics. Journal of the European Ceramic Society, 2021, 41, 4896-4906.	5.7	29
9	Enhancement of rare earth ions hosting potential of B2O3 added germanium based glasses: A detailed optical analysis. Journal of Alloys and Compounds, 2021, 883, 160800.	5.5	10
10	In Situ Synthesis of β-Na1.5Y1.5F6: Er3+ Crystals in Oxyfluoride Silicate Glass for Temperature Sensors and Their Spectral Conversion and Optical Thermometry Analysis. Molecules, 2021, 26, 6901.	3.8	4
11	Y3Al5O12-α-Al2O3 composites with fine-grained microstructure by hot pressing of Al2O3-Y2O3 glass microspheres. Journal of the European Ceramic Society, 2020, 40, 852-860.	5.7	9
12	Processing and properties of luminescent Cr3+ doped transparent alumina ceramics. Journal of the European Ceramic Society, 2020, 40, 2573-2580.	5.7	24
13	Crystallization kinetics of binary Yb2O3–Al2O3 glass. Journal of Thermal Analysis and Calorimetry, 2020, 142, 2141-2148.	3.6	2
14	Optical and mechanical properties of mn-doped transparent alumina and their comparison with selected rare earth and transient metal doped aluminas. Journal of the European Ceramic Society, 2020, 40, 4894-4900.	5.7	12
15	Crystallization kinetics of gehlenite glass microspheres. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1003-1010.	3.6	2
16	Thermal behaviour and photoluminescence properties of Er- and Nd-doped yttrium aluminate glasses. Journal of Thermal Analysis and Calorimetry, 2020, 142, 129-138.	3.6	2
17	Analysis of red mud doped Bi2O3-B2O3-BaO glasses for application as glass solder in radiation shield repair using MCNPX simulation. Ceramics International, 2019, 45, 7619-7626.	4.8	18
18	Spectroscopic and thermal analysis of lead-free multipurpose radiation shielding glasses. Ceramics International, 2019, 45, 5332-5338.	4.8	10

ROBERT KLEMENT

#	Article	IF	CITATIONS
19	Crystallization kinetics of yttrium aluminate glasses. Journal of Thermal Analysis and Calorimetry, 2018, 133, 227-236.	3.6	13
20	Crystallization kinetics of binary La2O3-Al2O3 glass. Journal of Non-Crystalline Solids, 2018, 501, 55-61.	3.1	8
21	Crystallization kinetics of glass microspheres with yttrium aluminium garnet (YAG) composition. Journal of Thermal Analysis and Calorimetry, 2018, 131, 1115-1123.	3.6	9
22	Crystallization and visible–near-infrared luminescence of Bi-doped gehlenite glass. Royal Society Open Science, 2018, 5, 181667.	2.4	11
23	Al 2 O 3 -SiC nanocomposites. , 2018, , 49-92.		4
24	Thermal behaviour of yttrium aluminate glasses studied by DSC, high-temperature X-ray diffraction, SEM and SEM–EDS. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1407-1415.	3.6	11
25	Luminescent Er 3+ doped transparent alumina ceramics. Journal of the European Ceramic Society, 2017, 37, 2695-2703.	5.7	44
26	Luminescent Eu3+-doped transparent alumina ceramics with high hardness. Journal of the European Ceramic Society, 2017, 37, 4271-4277.	5.7	22
27	Photoluminescence of (ZnO)X-Z(SiO2)Y:(MnO)Z green phosphors prepared by direct thermal synthesis: The effect of ZnO/SiO2 ratio and Mn2+ concentration on luminescence. Ceramics International, 2016, 42, 16852-16860.	4.8	13
28	Aluminate glass based phosphors for LED applications. Journal of the European Ceramic Society, 2016, 36, 2969-2973.	5.7	8
29	Luminescent rare-earth-doped transparent alumina ceramics. Journal of the European Ceramic Society, 2016, 36, 2975-2980.	5.7	34
30	Preparation and characterization of Yb2O3–Al2O3 glasses by the Pechini sol–gel method combined with flame synthesis. Ceramics International, 2014, 40, 6179-6184.	4.8	19
31	Luminescent rare-earth ions doped Al2O3–Y2O3–SiO2 glass microspheres prepared by flame synthesis. Ceramics International, 2014, 40, 6005-6012.	4.8	14
32	Gehlenite:Eu3+ phosphors from a silicone resin and nano-sized fillers. Optical Materials, 2014, 36, 1243-1249.	3.6	20
33	Flame-spraying synthesis of aluminate glasses in the Al2O3–La2O3 system. Ceramics International, 2012, 38, 5543-5549.	4.8	11
34	Er- and Nd-doped yttrium aluminosilicate glasses: Preparation and characterization. Optical Materials, 2011, 33, 1872-1878.	3.6	18
35	Al2O3–SiC composites prepared by infiltration of pre-sintered alumina with a poly(allyl)carbosilane. Journal of the European Ceramic Society, 2011, 31, 111-119.	5.7	15
36	Cobalt(II) Complexes with Substituted Salen-Type Ligands and Their Dioxygen Affinity inN,N-Dimethylformamide at Various Temperatures. European Journal of Inorganic Chemistry, 2005, 2005, 1459-1467.	2.0	42

ROBERT KLEMENT

#	Article	IF	CITATIONS
37	The spectroscopic and structural properties of copper(II) complexes of the novel tridentate (ONO) pyridine N-oxide ligand Hpoxap. Polyhedron, 2002, 21, 1561-1571.	2.2	38
38	Complexes with New Chelate Anionic Ligands Formed by Nucleophilic Addition in Copper(II) Coordination Sphere. III. The Crystal Structures of (2,2'-Bipyridine-N,N')(cyanato-N)[methyl(2-cyano-2-imidoxy Ethaneimidate-N,N')]copper(II) and (2,2'-Bipyridine-N,N')(2-cyano-2-imidoxy Ethaneimidate-N,N')copper(II). Collection of Czechoslovak	1.0	6
39	Chemical Communications, 1999, 64, 600-612. Spectroscopic and magnetic properties and structure of a five-coordinate, O2-binding cobalt(II) Schiff base complex and of the copper(II) analogue. Inorganica Chimica Acta, 1998, 278, 127-135.	2.4	46
40	Quantitative electron paramagnetic resonance (EPR) spectrometry with a TE104 double rectangular cavity Part 1. A simple alignment procedure for the precision positioning of the sample. Analytica Chimica Acta, 1996, 333, 249-252.	5.4	25
41	Quantitative electron paramagnetic resonance (EPR) spectrometry with a TE104 double rectangular cavity Part 2. Analysis of sample and TE104 cavity error sources associated with the movement of line-like samples into the TE104 cavity. Analytica Chimica Acta, 1996, 333, 253-265.	5.4	26
42	Copper(II) and Cobalt(II) Complexes with Derivatives of Salen and Tetrahydrosalen: An Electron Spin Resonance, Magnetic Susceptibility, and Quantum Chemical Study. The Journal of Physical Chemistry, 1995, 99, 137-143.	2.9	45